
Master/Bachelor Thesis

Self-Supervised Learning for HI-RES Tree Cover and Tree Species Segmentation

Background: Using machine learning methods to classify very high-resolution satellite imagery requires a vast amount of training data. Collecting such data is an extremely time-consuming task and often only valuable for a specific problem. Self-supervised learning could enable a considerable reduction of required training data by learning generic features. Due to a lack in availability of large amounts of high-resolution imagery, self-supervised model pre-training is done on freely available Sentinel-2 imagery. Such a data set is for example available for the EarthNet2021 challenge (https://www.earthnet.tech).

Aim of this thesis is to test how well can model pre-trained on medium spatial resolution Sentinel-2 imagery (10m resolution) generalize for the segmentation of tree cover and tree classes in very high-resolution imagery (0.3m resolution).

Requirements:

Enthusiasm to work in the field of machine learning and forest remote sensing. Basic skills in Python programming.

Further information: Based on the content of the topic, both bachelor's and master's theses in the fields of forestry and computer science are possible.

Contact

Dr. Nils Nölke Forest Inventory and Remote Sensing nils.noelke@forst.uni-goettingen.de Dr. Timo Lüddecke Neural Data Science Group timo.lueddecke@uni-goettingen.de