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Abstract
As the university-based Tier-2 computing centres in Germany transition towards integration with national
HPC facilities, the challenge arises of exploiting these resources opportunistically without disrupting primary
production workloads. This thesis investigates methods for background job execution and monitoring within
the established integration of the GoeGrid cluster with the NHR cluster EMMY. Building on the existing
drone-based deployment, the work focused on enabling background jobs through Condor slots, isolation via
cgroup-based controls and validation of scheduler behaviour under different activation policies.

A monitoring stack based on the ELK framework was implemented, offering visibility into network traffic,
power consumption, node lifecycle states and PanDA queue assignments. These dashboards provided
operational transparency and ensured that drones and queues behaved as expected in production-like
settings. Controlled experiments showed that background jobs can successfully recover idle resources, but
when activated prematurely they interfered with single-core foreground tasks, causing an efficiency loss.
Restricting background jobs to draining phases mitigated interference while maintaining high utilisation.

In parallel, the drone management codebase was refactored to emphasise modularity, configurability and
reproducibility. Although static drone lifetimes and limited error handling remain, the system provides a
solid basis for future automation with COBalD/TARDIS.

Zusammenfassung
Mit der Umstellung der universitätsbasierten Tier-2-Rechenzentren in Deutschland auf die Integration mit
nationalen HPC-Systemen stellt sich die Herausforderung, diese Ressourcen opportunistisch zu nutzen,
ohne die primären Produktions-Workloads zu beeinträchtigen. Diese Arbeit untersucht Methoden zur
Ausführung von Hintergrundjobs und zum Monitoring im Rahmen der etablierten Integration des GoeGrid-
Clusters mit dem NHR-Cluster EMMY. Aufbauend auf der bestehenden, drohnenbasierten Infrastruktur lag
der Schwerpunkt auf der Aktivierung von Hintergrundjobs über Condor-Slots, der Isolation mittels cgroup-
Kontrollen sowie der Validierung des Scheduler-Verhaltens unter verschiedenen Aktivierungsstrategien.

Ein auf dem ELK-Framework basierender Monitoring-Stack wurde implementiert, der Einblicke in Netz-
werkverkehr, Energieverbrauch, Zustände der Rechenknoten und PanDA-Queue-Zuweisungen bietet. Diese
Dashboards ermöglichten Transparenz im Betrieb und stellten sicher, dass Drohnen und Queues unter
produktionsähnlichen Bedingungen korrekt arbeiteten. Kontrollierte Experimente zeigten, dass Hinter-
grundjobs ungenutzte Ressourcen erfolgreich ausschöpfen können, jedoch bei zu früher Aktivierung mit
einkernigen Vordergrundjobs interferierten und so einen Effizienzverlust verursachten. Die Beschränkung
von Hintergrundjobs auf die Drain-Phase verhinderte Interferenzen und ermöglichte gleichzeitig eine hohe
Gesamtauslastung.

Parallel dazu wurde der Code zur Verwaltung der Drohnen refaktoriert, um Modularität, Konfigurier-
barkeit und Reproduzierbarkeit zu betonen. Obwohl statische Drohnenlaufzeiten und eingeschränktes
Fehlerhandling bestehen bleiben, bietet das System eine solide Grundlage für zukünftige Automatisierung
mit COBalD/TARDIS.
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Chapter 1

Introduction

1.1 High-Energy Physics Computing Context

High-Energy Physics (HEP) is a data-intensive science. Every advance in experimental capability,
from higher beam energies to more sophisticated detectors, has gone hand in hand with increased
demands on computing. The discipline has therefore developed a unique reliance on distributed
and large-scale computational infrastructures, not only to process and store data but also to
make it accessible to a global community of researchers. Understanding this context is essential to
appreciate the role of local clusters and High-Performance Computing (HPC) systems in supporting
modern HEP workflows.

At the core of HEP research are large international collaborations. Thousands of scientists con-
tribute to the design, construction and operation of experiments and thousands more perform
analyses on the resulting datasets. This scale is unmatched in most other sciences and requires a
model in which computing resources are shared across institutional and national boundaries.

The growth in data volume is not linear but exponential. Detector technologies continually improve
in resolution, precision and readout rate, leading to a rapid increase in both raw and derived data
products. Trigger systems reduce data at the detector level by picking up only interesting events,
but the output remains measured in petabytes per year for each major experiment. Moreover,
much of the computational load arises not from the storage of raw data but from the repeated
reprocessing, calibration and simulation tasks that are essential for extracting physics results. Each
of these tasks multiplies the computational demand, creating a sustained pressure on available
resources.

To cope with this, HEP has been at the forefront of adopting novel computing paradigms. The
field pioneered the use of large distributed grids, federated storage systems and job scheduling
across heterogeneous environments. These solutions have since influenced developments in cloud
computing and large-scale data science. A defining characteristic of the HEP computing model

1
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is its balance between central coordination and local autonomy: central facilities provide global
services, while regional and institutional clusters contribute capacity according to their capabilities.
This structure both spreads the load and provides resilience against local outages or bottlenecks.

In the future the challenge will increase. The upcoming High-Luminosity upgrade of the Large
Hadron Collider (LHC) will increase data rates and analysis complexity by an order of magnitude.
Meeting these requirements within realistic budget and energy constraints calls for both hardware
and software innovation. Integration of HPC resources, efficient use of accelerators such as
Graphics Processing Unit (GPU)s and opportunistic resource usage strategies are increasingly
seen as critical elements. Monitoring systems that can provide fine-grained insight into resource
utilisation and job behaviour are equally essential, as they allow sites to identify inefficiencies and
optimise their operations.

Within this broader landscape, national and regional computing centres play a dual role. They
contribute capacity to the global infrastructure while also supporting local research communities.
Their effectiveness depends not only on raw performance but also on how well they integrate with
the wider ecosystem. Transitioning such centres from traditional grid middleware to modern HPC
environments is a delicate process that requires rethinking job scheduling, resource allocation and
monitoring strategies. It is in this space that the present work is situated.

1.1.1 CERN

The European Organization for Nuclear Research (Conseil Européen pour la Recherche Nucléaire)
(CERN) is the largest laboratory for particle physics in the world. Founded in 1954, it has grown
into an international hub for both fundamental research and technological development. Located
near Geneva on the French–Swiss border, CERN hosts a complex of accelerators and experimental
facilities that serve a community of more than 12,000 scientists from over 100 countries [1]. Its
mission is to advance knowledge of fundamental particles and their interactions, while also
training the next generation of scientists and engineers and fostering international collaboration.

The core of the laboratory is the LHC, a circular proton–proton and heavy-ion accelerator with a
circumference of 27 kilometres (Fig. 1.1). It is buried about 100 metres underground and connects
to four major experiments: A Toroidal LHC ApparatuS (ATLAS), Compact Muon Solenoid (CMS),
A Large Ion Collider Experiment (ALICE) and Large Hadron Collider beauty experiment (LHCb)
(Fig. 1.2). Protons are accelerated in opposite directions and brought into collision at a design
centre-of-mass energy of 14TeV, making the LHC the most powerful accelerator ever built. The
collider is supplied by a sequence of pre-accelerators, which progressively increase beam energy
before injection into the main ring.

In addition to accelerators, CERN provides a wide range of support infrastructure. This includes
experimental caverns for the detectors, extensive data centres and the initial computing resources
for data recording and reconstruction. The Tier-0 centre at CERN is the entry point of all raw
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data collected by the LHC experiments. Within seconds of being recorded, events are stored,
reconstructed and distributed to Tier-1 centres worldwide through the Worldwide LHC Computing
Grid (WLCG) [3]. This integration of accelerator operations with computing infrastructure is a
defining feature of modern HEP and highlights the dual role of CERN as both a scientific and a
technological institution.

CERN has also played a central role in the development of distributed computing and networking.
The laboratory was an early adopter of large-scale grid computing and it was at CERN that the
World Wide Web was originally invented to facilitate collaboration among physicists [5, 6]. The
same collaborative culture underlies today’s computing model, where CERN acts as both the
physical host of the accelerator and the global hub for data management and distribution. This
combination of physics, engineering and computing places CERN at the core of the HEP research,
which is the context of this thesis.

Figure 1.1: The LHC, Geneva, at the border of Switzerland and France. Adapted from [1].

The LHC is scheduled for a major upgrade to the High Luminosity Large Hadron Collider
(HL-LHC), which aims to increase the integrated luminosity by roughly an order of magnitude
beyond the original design, thereby enabling more precise measurements and greater sensitivity to
rare processes [7]. The HL-LHC is expected to begin operation in 2030, increasing instantaneous
luminosity via stronger focusing magnets, crab cavities and upgraded injector systems [7]. This
enhancement places additional demands on the computing and data infrastructure: experiments
will generate larger data volumes, higher pile-up (more simultaneous collisions per crossing)
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Figure 1.2: Layout of the LHC and its four major experiments. ATLAS and CMS are located at
the collision points with the highest energies, while ALICE and LHCb serve specialised physics
programmes. Adapted from [1].

and stricter real-time data processing requirements. As such, efficient integration of HPC and
opportunistic computing resources becomes even more critical in the HL-LHC era.

1.1.2 ATLAS

ATLAS is one of the two general-purpose detectors at the LHC. It is designed to cover the widest
possible range of physics processes, from precision measurements of Standard Model parameters
to searches for new phenomena. The detector is located at Point 1 of the LHC ring and records
collisions at a rate of up to 40 million interactions per second. A multi-level trigger system reduces
this rate to a manageable level for permanent storage, selecting events of potential physics interest
with high efficiency [2].

The ATLAS detector is cylindrical in design, measuring 44 metres in length, 25 metres in diameter
and weighing about 7,000 tonnes. Its structure is organised in layers, each optimised for different
types of particles (Fig. 1.3). The inner detector reconstructs charged particle tracks with high preci-
sion close to the interaction point. Surrounding it are electromagnetic and hadronic calorimeters,
which measure the energy of electrons, photons and hadrons. The outermost system is the muon
spectrometer, which uses toroidal magnetic fields to identify and measure muons. Together these
systems provide nearly hermetic coverage, ensuring that most particles produced in a collision are
detected and reconstructed.

The scientific programme of ATLAS is broad. It includes the study of electroweak interactions, the
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strong force at high energies and the properties of heavy particles such as the top quark and the
Higgs boson. ATLAS was central to the 2012 discovery of the Higgs boson [8], an achievement
that confirmed the last missing element of the Standard Model. Since then, the experiment
has focused on precision measurements of Higgs properties, searches for supersymmetry, extra
dimensions, dark matter candidates and other phenomena beyond the Standard Model. Each of
these research directions requires large datasets, complex statistical analyses and simulations for
theory confirmations, which in turn depend on efficient computing and data management.

With more than 5,000 scientists from almost 180 institutions worldwide, ATLAS exemplifies the
scale and collaborative character of modern HEP. Its success depends not only on the detector
itself but also on the computing infrastructure that enables rapid data reconstruction, distribution
and analysis. ATLAS therefore plays a central role in motivating developments in distributed
computing and in shaping the requirements for systems such as the WLCG.

Figure 1.3: Schematic view of the ATLAS detector with its main subsystems: the inner detector,
calorimeters and muon spectrometer. Adapted from [1, 2].

1.1.3 WLCG

The WLCG is a globally distributed computing infrastructure developed to handle the big data
volumes generated by the LHC experiments. No single site could provide the storage and process-
ing capacity required. So a federated model was established in which resources from more than
170 computing centres in over 40 countries are combined into a coherent system [3]. The WLCG
has become the largest scientific computing grid in operation, supporting tens of thousands of
scientists worldwide.

The system is organised in a hierarchical tier structure (Fig. 1.4, 1.5). At the top is Tier-0, located
at CERN, which is responsible for the initial recording and reconstruction of raw data. From
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there, data are distributed to Tier-1 centres, large national facilities that provide long-term storage,
reprocessing and high-availability services. Each Tier-1 site is connected to CERN and to several
Tier-2 sites through dedicated high-bandwidth links. Tier-2 centres, often hosted by universities
and regional computing facilities, provide resources for Monte Carlo simulation and user-level
data analysis. In this way, the grid ensures that both central workflows and individual researcher
analyses are supported in a balanced and scalable fashion.

The WLCG middleware handles job scheduling, data access, authentication and monitoring across
heterogeneous sites. Over the years, the grid model has evolved to integrate new technologies
such as virtualisation, cloud services and HPC resources. With the High-Luminosity LHC upgrade
in the upcoming future, the WLCG is preparing for an order-of-magnitude increase in data volume
and computational demand. Efforts are focused on more efficient resource usage, integration of
accelerators and advanced monitoring frameworks.

For local Tier-2 sites such as GoeGrid, participation in the WLCG provides access to global
workflows while also creating site-specific challenges. Each centre must ensure compatibility with
grid middleware, provide reliable resources and adapt to evolving experiment requirements. The
transition of such sites to the national HPC systems, while maintaining seamless integration into
the WLCG, is one of the key motivations of this thesis.

Figure 1.4: Schematic view of the tiered structure of the WLCG. Data are collected at CERN (Tier-0),
distributed to Tier-1 centres, then further processed and analysed at Tier-2 sites. Adapted from [3].
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Figure 1.5: Schematic view of the connectivity of the WLCG. DE-KIT is a Tier 1 site located in
Karlsruhe, Germany. Adapted from [3].

1.2 Local Infrastructure

The WLCG relies on the combined capacity of national and regional sites, which serve as Tier-1 or
Tier-2 centres within the distributed infrastructure. These local facilities provide the bulk of the
resources available for simulation and user-level analysis while also contributing to large-scale
reprocessing campaigns. Their role is therefore essential, not only for the performance of the grid
as a whole but also for supporting local research groups and training students and young scientists.
Each site operates within the same global framework but adapts its configuration to the hardware
and administrative environment available locally.

The University of Göttingen has been operating such a facility since 2008 in the form of GoeGrid,
which acts as a Tier-2 and Tier-3 centre for the ATLAS experiment. Through its role in the WLCG,
GoeGrid provides computing and storage resources that are directly accessible to the collaboration
while at the same time serving the needs of the local particle physics group. The site enables
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large-scale Monte Carlo production, user analyses and data processing tasks.

With the establishment of the National High-Performance Computing (Germany) (NHR) pro-
gramme, new resources became available through modern HPC clusters. In this context, by the
time current hardware at GoeGrid is phased out, no replacement is planned to be installed. Instead
the computation power is planned to be provided from the resources available at the local NHR
centre High-Performance Computing Cluster EMMY (University of Göttingen) (EMMY) [9]. Unlike
traditional grid sites, EMMY is originally designed as a general-purpose HPC system, optimised
for a wide range of scientific applications. Integrating such a system into the WLCG therefore
requires adapting workflows, middleware and scheduling policies to a computing environment
that differs significantly from classical grid clusters.

The transition from GoeGrid to EMMY is not simply a hardware upgrade but represents a structural
change in how resources are provisioned and managed. Whereas grid middleware traditionally
handled job submission and monitoring, HPC centres operate with batch scheduling systems such
as Simple Linux Utility for Resource Management (Slurm), which impose different constraints on
users and administrators. At the same time, the use of container technologies makes it possible to
reproduce the software environment of grid worker nodes within HPC jobs. This hybrid approach
allows experiments like ATLAS to continue running their workloads while taking advantage of
modern HPC architectures. However, it also introduces new challenges in lifecycle management,
monitoring and scheduling efficiency. Addressing these challenges is the main theme of this thesis.

1.2.1 GoeGrid

GoeGrid is a long-standing grid computing facility at the University of Göttingen that serves both
as a Tier-2 and Tier-3 centre within the WLCG. As a Tier-2 site, it contributes resources to the
ATLAS experiment for Monte Carlo production, reprocessing tasks and user-level analyses. At
the same time, it acts as a Tier-3 resource for the local particle physics group, providing dedicated
capacity for smaller-scale workflows, prototyping and training. This dual role illustrates the
importance of local sites within the global infrastructure.

The hardware infrastructure of GoeGrid is based on a cluster environment with several thousand
Central Processing Unit (CPU) cores and dedicated storage systems. Standard grid middleware
ensured interoperability with the WLCG, allowing jobs to be submitted transparently from the
ATLAS central workload management system. Storage elements were integrated into the global
data federation, making datasets accessible to both local and remote users. In practice, GoeGrid
supports thousands of jobs daily, depending on demand and availability.

Beyond providing raw capacity, GoeGrid also serves as a training environment for students and
early-career researchers. Operating a Tier-2/Tier-3 centre exposes the local community to the
complexities of distributed computing, including authentication, data management and workload
scheduling. This knowledge transfer is valuable not only for physics analysis but also for broader
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expertise in high-performance and distributed computing.

1.2.2 NHR EMMY

The NHR initiative in Germany provides researchers with access to modern computing infrastruc-
ture at several universities across the country. At the University of Göttingen, this role is fulfilled
by the HPC clusters EMMY and GRETE.

EMMY was designed as a general-purpose HPC system rather than as a dedicated grid site. Its
hardware configuration includes more than a hundred thousand CPU cores, high-speed intercon-
nects and a hierarchical storage system combining parallel file systems with archival solutions.
Unlike the grid clusters, which are usually composed of worker nodes managed by experiment-
specific middleware, HPC systems like EMMY are optimised for a wide range of scientific applica-
tions, from computational fluid dynamics to machine learning. This diversity makes them highly
powerful but also less tailored to the specific requirements of ATLAS workloads.

Resource management on EMMY is performed through the batch scheduling system Slurm, which
enforces strict job lifetime and resource allocation policies. These policies ensure fair usage across
disciplines but impose constraints that differ from GoeGrid. For example, the maximum run time
of jobs and the priority-based scheduling mechanism can conflict with the needs of long-running
or opportunistic physics workflows. Integrating ATLAS workloads into such an environment
therefore requires additional layers of adaptation.

Despite these differences, EMMY offers significant advantages compared to the GoeGrid cluster. Its
hardware is modern and energy-efficient, its interconnect enables high-bandwidth communication
between nodes and its support infrastructure ensures long-term sustainability. By deploying
containerised worker nodes within EMMY jobs, the software environment required by ATLAS can
be reproduced reliably.

1.2.3 Transition from GoeGrid to EMMY

The transition from GoeGrid to EMMY marks a baseline change in how resources are provisioned
for the ATLAS experiment at the University of Göttingen. While GoeGrid was operated as
a conventional grid site, fully integrated with WLCG middleware and tailored to experiment
requirements, EMMY is an HPC system designed to serve a broad scientific community. This
difference meant that a direct migration of services was not possible. Instead, new strategies
were required to adapt the ATLAS computing model to an HPC environment while preserving
compatibility with the global grid infrastructure.

One of the key challenges was the change in workload management. On GoeGrid, jobs are
submitted through the Production and Distributed Analysis (ATLAS workload management
system) (PanDA) to GoeGrid middleware (Advanced Resource Connector – Computing Element
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(ARC-CE)) as pilot jobs. Those pilot jobs are then run on the GoeGrid worker nodes and the pilot
job subsequently pulls from PanDA the actual job payload.

In contrast, EMMY relies on the Slurm batch scheduler, which enforces strict run time limits, job
prioritisation and fair-share policies. This means ATLAS jobs would need to compete with other
jobs for the resources. Furthermore, EMMY does not have the software stack required for the
ATLAS jobs. EMMY has its own update schedule, which might conflict with update schedules
of ATLAS sites. These constraints necessitate an additional layer between ATLAS and the HPC
system.

The adopted solution is to run containerised worker nodes (drones) inside Slurm jobs, effectively
transforming HPC resources into virtual grid nodes for the duration of their allocation. This
allows ATLAS software and middleware to operate in a familiar environment, while respecting
the policies of the underlying HPC system.

Another issue is the difference in job lifecycle. Grid jobs can, in principle, run indefinitely as long
as resources are available, whereas on EMMY jobs are bound by maximum wall time limits. If the
virtual worker job can run for 7 days, accepting ATLAS jobs on that worker node on the last day
would mean they most likely will be lost due to the time limit of the host Slurm job. This required
adjustments in scheduling strategies, particularly to minimise job loss. However, this introduced
considerable amount of CPU hours not utilised towards the end of the drone lifecycle (Fig. 1.6). To
make use of idle resources towards the end of container lifetimes motivated the development of
lifecycle-aware background jobs, which exploit otherwise wasted CPU hours without interfering
with primary workloads.

Overall, the move from GoeGrid to EMMY demonstrates both the opportunities and the challenges
of integrating HPC systems into the WLCG. It enables the use of modern, sustainable infrastructure
while requiring solutions for workload adaptation, monitoring and scheduling efficiency. These
solutions form the central focus of this thesis.

1.3 Software Ecosystem

The successful integration of HEP workloads into HPC systems depends not only on hardware
but also on the software ecosystem that manages job scheduling, resource usage and monitoring.
In the case of the transition from GoeGrid to EMMY, several key technologies play a central
role. These include the Slurm batch scheduler, which governs access to HPC resources; High
Throughput Condor (HTCondor), which is used by ATLAS to manage and distribute workloads;
the Elasticsearch, Logstash, Kibana (ELK) Stack, which provides monitoring and visualisation
capabilities; and control groups (cgroup), which enforces resource isolation at the operating
system level. Together, these tools form the foundation on which lifecycle-aware scheduling and
monitoring strategies can be built.
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Figure 1.6: A drone with a lifetime of 2 days. New jobs are accepted only during the first day. The
drone has 192 logical cores. "Draining" indicates the start of the period in which the drone is only
running jobs that were accepted the previous day and have not finished yet.

1.3.1 Slurm

Slurm is the workload manager used on the EMMY HPC cluster. It is an open-source batch
scheduling system widely adopted in HPC environments due to its scalability and flexibility.
Slurm is responsible for allocating compute resources, enforcing fair usage policies and managing
job queues. Users submit jobs to Slurm by specifying required resources such as CPU cores,
memory and wall time. The scheduler then determines when and where each job will run, taking
into account priorities, limits and available capacity.

Slurm enforces controlled access to a single HPC facility. In practice, this means that jobs on EMMY
are subject to maximum run time limits and are scheduled according to fair-share policies that bal-
ance demand across disciplines. These constraints can be restrictive for physics workloads, which
often consist of many independent tasks that must run reliably over long periods. Nevertheless,
the predictability and efficiency of Slurm make it a robust platform for resource management at
scale.

For the integration of ATLAS workloads, Slurm acts as the gateway between the WLCG and
the HPC system. Containerised worker nodes are submitted to Slurm as standard batch jobs,
effectively transforming allocated resources into temporary grid worker nodes. This books a
number of EMMY nodes for a defined period of time (7 days) to be used to run ATLAS jobs
exclusively. When the drone is near the end of its lifetime, a new drone can be launched via Slurm
again.

1.3.2 HTCondor

HTCondor is a specialised workload management system designed for high-throughput com-
puting. Unlike Slurm, which focuses on efficiently scheduling jobs within a single HPC facility,
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HTCondor is optimised for managing large numbers of independent tasks across heterogeneous
and geographically distributed resources. It is widely used in scientific computing and serves as
the backbone of workload management for the ATLAS experiment within the WLCG.

The strength of HTCondor lies in its ability to handle opportunistic resources. Jobs are represented
as independent tasks that can be dispatched to any available worker node in the system, with
built-in mechanisms for job checkpointing, prioritisation and fault tolerance. The matchmaking
process between jobs and resources is highly flexible, allowing workloads to be distributed across
a wide range of environments, from dedicated clusters to opportunistic desktop resources. For
ATLAS, this flexibility is essential, as it ensures that computational campaigns can scale across
hundreds of sites with varying levels of capacity and reliability.

HTCondor is also well suited for workflow management. Its Directed Acyclic Graph Manager
(HTCondor component) (DAGMan) allows users to express dependencies between tasks, ensuring
that complex analysis pipelines and simulation campaigns are executed in the correct order. This
capability is critical for the large-scale production of simulated data, which often involves multiple
stages of generation, reconstruction and validation.

In the context of the transition from GoeGrid to EMMY, HTCondor continues to serve as the
workload manager on the grid side. Jobs destined for Göttingen are first processed by PanDA,
which sends the pilots to ARC-CEs. Those use HTCondor to assign tasks to available worker
nodes, including drones. On EMMY, these jobs run within containerised environments submitted
through Slurm. This dual-layer architecture, HTCondor at the grid level and Slurm at the HPC
level, illustrates the challenge of integrating HEP workloads into HPC systems. Ensuring seam-
less interaction between these two schedulers is a key requirement for maintaining Göttingen’s
contribution to the WLCG.

1.3.3 ELK Stack

The ELK Stack is a collection of open-source tools for storing, processing and visualising logs
and monitoring data. It consists of three main components: Elasticsearch, Logstash and Kibana.
Together they provide a flexible framework for centralised logging, real-time analytics and in-
teractive visualisation, which has made the stack widely adopted in both industry and research
environments.

Elasticsearch is a distributed search and analytics engine that stores data in a document-oriented
format. Its scalability and indexing capabilities make it suitable for handling large volumes of
semi-structured data such as system logs, job records and performance metrics. Queries can be
performed efficiently across millions of entries, allowing administrators and users to identify
patterns and anomalies in resource usage.

Logstash serves as the data processing pipeline. It ingests information from diverse sources, includ-
ing system logs, application outputs and monitoring agents, applies filtering and transformation
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and forwards the results into Elasticsearch. Its plugin-based architecture allows the integration of
many data formats and sources without requiring extensive custom development. This flexibility
is particularly valuable in heterogeneous computing environments where multiple logging formats
coexist.

Kibana provides the user interface for data exploration and visualisation. It offers dashboards,
plotting tools and search functionality, enabling users to interact with data stored in Elasticsearch.
Administrators can monitor cluster performance in real time, while researchers can analyse trends
such as job efficiency or failure patterns. The combination of search, analytics and visualisation
tools makes Kibana central to the usability of the ELK Stack.

For high-performance and distributed computing, the ELK Stack addresses the challenge of
managing large amounts of operational data. By consolidating logs and metrics from multiple
sources, it supports both debugging and long-term optimisation. In the context of integrating
ATLAS workloads on EMMY, ELK provides the foundation for building custom monitoring
pipelines that track drones, job performance and resource utilisation.

Figure 1.7: The ELK Stack components: Elasticsearch for storage and search, Logstash for data
ingestion and Kibana for visualisation.
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1.3.4 cgroups

On system level, cgroup are a Linux kernel feature that enables fine-grained control of system
resources among groups of processes. Introduced in kernel version 2.6, cgroup allows admin-
istrators to limit, prioritise and account for resource usage such as CPU time, memory and
Input/Output (I/O) bandwidth. They are widely used in container runtimes, cloud platforms and
HPC environments where strict isolation between workloads is required.

At their core, cgroup organises processes into hierarchical groups, with each group subject to
specific resource policies. For example, CPU shares can be allocated to ensure that no single job
monopolises processing power or memory limits can be applied to prevent runaway processes
from destabilising a system. This capability is essential in multi-tenant environments, where
diverse applications share the same physical infrastructure.

In the context of HEP computing and this thesis, cgroup is particularly useful for separating
opportunistic background jobs from primary production workloads. Background jobs can be
constrained so that they only consume idle resources and yield immediately when higher-priority
tasks require them. This ensures that opportunistic use of resources does not interfere with the
performance or reliability of the main experiment workflows. Without such mechanisms, running
additional jobs during idle periods would risk degrading the throughput of critical tasks.

On modern HPC systems such as EMMY, cgroup is integrated with the Slurm workload manager,
which automatically applies resource limits based on user job specifications. In addition, container
runtimes used to encapsulate ATLAS worker nodes rely on cgroup to enforce isolation between
jobs. This combination makes cgroup a central element in lifecycle-aware scheduling strategies,
providing the technical basis for safely exploiting idle CPU cycles without compromising primary
workloads.

1.4 Problem Statement

The transition from GoeGrid to the NHR cluster EMMY places the Göttingen particle physics
group at the intersection of two distinct computing environments. On the one hand, the WLCG
has developed around grid sites, where resources are dedicated to experiment workloads and
controlled by grid middleware. On the other hand, modern HPC centres such as EMMY operate
with batch schedulers, strict run time limits and fair-share policies designed to serve a broad range
of scientific disciplines. Bridging these two is essential for maintaining the contribution of the
Göttingen site to ATLAS while aligning with the national HPC strategy.

Several challenges arise in this context. First, ATLAS workflows are not naturally adapted to
the constraints of HPC systems. Many jobs are long-running, rely on opportunistic scheduling,
and require software environments that differ from those used by other scientific fields. These
characteristics conflict with the policies of HPC clusters, where run time and resource allocations
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are tightly controlled. Without adaptation, physics workloads cannot be executed reliably on such
systems.

Second, the lifecycle of jobs on EMMY introduces inefficiencies. Containerised worker nodes
have a fixed lifetime imposed by the scheduler. To minimise job losses, production workloads
are stopped well before the end of a container’s lifetime. This results in idle CPU hours that have
already been allocated but remain unused. Recovering this capacity in a way that does not interfere
with primary workloads represents a significant optimisation opportunity.

Third, monitoring and operational transparency are limited in heterogeneous environments. Tra-
ditional grid monitoring tools are not fully compatible with limited access to the HPC system.
Without a comprehensive monitoring framework, inefficiencies may remain undetected and op-
portunities for optimisation cannot be systematically exploited.

Addressing these challenges requires a combination of lifecycle-aware scheduling, fine-grained
resource isolation and robust monitoring. The goal of this thesis is to design and implement
methods that enable the efficient use of HPC resources for ATLAS workloads, with particular
emphasis on background jobs that exploit idle capacity and on monitoring pipelines that provide
detailed insights into system behaviour. In this way, the work contributes to the sustainable
integration of national HPC resources into the global WLCG infrastructure.





Chapter 2

Related Work

2.1 Distributed Infrastructures in HEP

The architecture and operation of large-scale computing infrastructures for HEP have evolved
significantly, with the WLCG being among the most important examples. Several studies have
examined how the distributed grid model has been implemented, the operational challenges it has
faced, and how to scale and monitor such large systems.

One relevant work is Lee et al. [10], which describes how ATLAS Distributed Computing (ADC)
provides offline data processing, dataset management and workflow management across many
sites. This study outlines the complexity of running distributed workloads reliably, dealing with
failures and ensuring service availability across diverse hardware and administrative domains.

Operational monitoring has also been a major research topic. Sedov et al. [11] discuss how ATLAS
developed dashboards and accounting systems to monitor site performance, job statuses and
resource efficiency across grid sites. These tools were essential in detecting misbehaving sites,
automating blacklisting and improving reliability at the site level.

A broader perspective is provided by Turilli et al. [12], who review pilot-job systems used in
distributed infrastructures, including PanDA and Glidein Based WMS (Workload Management
System) (GlideinWMS), which are core to the WLCG and the Open Science Grid. They identify
common abstractions, such as late binding and resource placeholders and analyse how these
systems cope with heterogeneous resource pools. Their work shows that pilot-job systems are a
critical enabling technology for large-scale distributed infrastructures.

In addition, Stagni et al. [13] report on strategies to integrate LHCb workloads onto the Marconi-A2
supercomputer, highlighting adaptations in memory usage, multi-process execution models and
submission policies required to match HPC constraints. This illustrates how distributed models
developed for the WLCG are beginning to converge with HPC practices.

17
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2.2 Integration of HEP Workflows with HPC Systems

As data volumes and computational demands from the LHC experiments continue to rise, sig-
nificant effort has been devoted to exploring the use of HPC resources in addition to traditional
grid infrastructures. The WLCG remains the backbone of distributed computing in HEP, but HPC
centres offer attractive capabilities, including cutting-edge hardware, energy-efficient designs and
high-bandwidth interconnects. Integrating the two models, however, is not straightforward, and
several projects have investigated technical and organisational solutions to bridge the gap.

One of the earliest efforts was the integration of ATLAS production workloads on leadership-class
supercomputers in the United States. The Blue Waters supercomputer at the National Center
for Supercomputing Applications (NCSA) was used as a testbed for running ATLAS jobs within
an HPC environment [14]. These studies demonstrated that with appropriate pilot-job models
and adaptations, it is possible to map high-throughput tasks onto HPC batch systems without
significant loss in efficiency.

Another area of progress has been the development of pilot frameworks that allow grid-like
execution models to operate on HPC clusters. The PanDA workload management system used
by ATLAS has been extended with the Harvester service, which provides a modular interface
to external batch systems [15]. This allows PanDA pilots to run on HPC resources through local
schedulers such as Slurm or Portable Batch System (PBS), dynamically provisioning worker nodes
inside these environments. Similar strategies have been explored in CMS and ALICE, with varying
degrees of success depending on the local HPC policies and access restrictions.

HPC systems typically enforce short maximum wall times, restrict outbound networking and
have strict software validation policies. These factors complicate the execution of long-running
or opportunistic high-throughput tasks. Moreover, data movement between HPC centres and
WLCG storage federations is often limited by policy or bandwidth constraints. Addressing these
issues requires continuous collaboration between HEP computing experts, HPC administrators
and funding agencies. The experience gained so far indicates that hybrid models, where HPC
centres contribute opportunistic or campaign-style resources to the WLCG, are both technically
feasible and strategically valuable.

2.3 Virtualisation and Containerisation in Scientific Computing

A recurring theme in HEP computing is the need to reproduce complex software stacks across
heterogeneous sites without sacrificing performance or maintainability. Early work addressed this
with full virtualisation. The CERN Virtual Machine (CernVM) project provided a minimal virtual
appliance tailored to experiment software, aiming to decouple user environments from site specifics
while keeping operational overhead low [16]. In parallel, the CernVM File System (CVMFS)
introduced a content-addressable, Hypertext Transfer Protocol (HTTP) based, globally cached,
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read-only filesystem to distribute experiment software and conditions data efficiently to worldwide
worker nodes [17]. Follow-up efforts reduced image footprint and provisioning cost (Micro-
CernVM) [18] and evolved CVMFS towards more responsive, container-oriented and extreme-scale
use cases [19–21].

As sites diversified (grid, HPC, cloud), Operating System (OS) level virtualisation became the
dominant mechanism to deliver reproducible environments with near-native performance. Singu-
larity/Apptainer, designed for unprivileged container execution on multi-tenant systems, demon-
strated minimal overhead for typical scientific workloads and provided the security model required
by HPC centres [22]. Systematic evaluations within HEP confirmed that containers are a viable
alternative to full virtualisation for production codes, with performance close to bare metal for
CPU, I/O and Message Passing Interface (MPI) bound tasks [23].

Experiments have since embedded containerisation into their operations. In ALICE, container
management has been used to encapsulate grid services and streamline operational deployment
across sites, reducing configuration drift and simplifying upgrades [24]. CMS has reported several
production studies that leverage Singularity to execute workloads at HPC centres with constrained
networking, using custom images and controlled data staging to satisfy site security policies [25–27].
These reports emphasise practical aspects that matter to operations: keeping images small, pre-
placing dependencies on shared filesystems and aligning run time configurations with local
schedulers.

CVMFS remains the backbone for shipping experiment software, even into containerised contexts,
because it minimises wide-area distribution of large images: the base container can stay slim,
while the experiment stack streams on demand from CVMFS caches [19]. Recent studies extend
CVMFS to supercomputing environments and subset repositories, enabling curated distributions
that reduce metadata pressure and start-up latency on leadership systems [21].

Despite the maturity of these tools, several challenges recur in the literature. First, container
start-up and image distribution can become bottlenecks at scale if images are large or not cached
effectively; strategies include CVMFS backed software, node-local caching and layered images
aligned with site modules [19, 27]. Second, HPC centres frequently restrict outbound connectivity
and privileged operations, which requires careful packaging of credentials, conditions data and
ancillary services, or controlled egress via gateways/VPNs [25,26]. Third, filesystem characteristics
(e.g., metadata performance of shared parallel filesystems) can affect containerised workloads;
works report benefits from pre-warming caches and reducing small-file traversals via CVMFS
subsetting [21]. Overall, prior art shows that virtualisation and containerisation are enabling
technologies for HEP at scale, but that operational details, such as image design, cache topology
and site policy integration, determine success.



20 CHAPTER 2. RELATED WORK

2.4 Monitoring Frameworks for Distributed and HPC Systems

Operating a worldwide, heterogeneous computing fabric requires monitoring stacks that cope
with high-rate telemetry, long retention for accounting and interactive troubleshooting. Over the
last decade, the WLCG and the experiments have converged on open-source, stream-oriented
architectures (search/index stores plus time-series plus dashboards) while retiring bespoke point
solutions.

A first consolidation step was CERN’s Unified Monitoring Architecture (UMA), which merged IT
data-centre and grid monitoring into a common data pipeline and tooling set. UMA describes a
layered design, from collection (agents and message buses) to transport and storage (e.g. search
and analytics stores) to visualisation (dashboards and notebooks), explicitly sized for petabyte-
scale monitoring and multi-tenant use by service teams and experiments [28]. Building on that, the
MONIT programme documented the production deployment for WLCG: standardised ingestion,
streaming, storage and alerting and shared dashboards for job throughput, data transfers and
site/service health [29]. This shift enabled experiments and sites to de-duplicate tooling and rely
on shared, operated services.

For grid-level, experiment-facing views, ATLAS developed PanDA’s Monitoring Extension
(BigPanDA), a web application that aggregates PanDA state at multiple abstraction levels (task,
job, site, dataset) and exposes interactive exploration, historic trends and alarms used in daily
operations [30, 31]. BigPanDA’s architecture and usage statistics (tens of thousands of requests per
day at Run-2 scale) illustrate the need for responsive, indexed backends and caching in face of
hundreds of millions of job records. Complementary ATLAS dashboards evolved for interactive
visual analytics of production activity and site behaviour [32].

CMS has similarly reported a full monitoring stack for its distributed computing, partly based on
CERN MONIT. The stack integrates streaming ingestion, a mix of time-series and document stores
and dashboards/alerts for workload, data management and transfers; it also emphasises cross-
correlation (e.g. mapping job failures to site incidents) and programmatic access for automated
remediation [33,34]. Earlier CMS work on web-based monitoring already highlighted requirements
for availability, drill-down and integrated authentication at LHC scale [35].

At the WLCG coordination level, the “Dashboards with Unified Monitoring” effort documented
the migration of legacy experiment-specific tools into common services and dashboards tailored
for operators and experiment shifters (transfer health, site availability, capacity and accounting).
This work also discusses the selection of open-source components and the governance/operational
aspects of running shared monitoring for a federated infrastructure [36].

Across these efforts, several patterns recur: centralisation of logs/metrics for correlation across
subsystems; near-real-time visualisation for operations with long-term archival for accounting
and planning; multi-tenant dashboards with role-based access; and Application Programming
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Interface (API) that enables automated reaction (e.g. alarms to ticketing/blacklisting). For HPC
integration, these stacks matter because they allow experiments to observe containerised payloads
running under local schedulers, diagnose performance pathologies related to shared filesystems
and networking and demonstrate non-interference with co-tenants.

2.5 Scheduling Strategies and Opportunistic Computing

Large distributed HEP workflows are typically dominated by many loosely coupled jobs. Two
families of schedulers therefore meet in practice: high-throughput (late-binding, pilot-based)
systems on the grid side and batch schedulers with queueing/fair-share on HPC systems. Efficient
and non-disruptive use of resources in hybrid settings hinges on scheduling strategies that reconcile
these models and on mechanisms that safely exploit slack capacity.

On the grid/HTCondor side, pilot systems implement late binding and opportunistic use of
resources: placeholder jobs start on available slots and then pull real payloads. This design lets
workload managers react to heterogeneous site conditions and failures and to prioritise production
campaigns dynamically. In ATLAS, PanDA pilots are increasingly provisioned via Harvester,
which interfaces pilots to external batch systems and enables elasticity across sites, including HPC
backends with constrained policies [15]. CMS reports similar operational patterns when using
network-segregated or policy-restricted resources, combining glide-in provisioning with targeted
data staging and policy-aware submission to avoid interference with co-tenants [25, 26].

On the HPC side, classic queueing strategies seek to maintain high utilisation while preserving
fairness. Backfilling - running smaller jobs ahead of a large queued job provided its reservation
start time is not delayed - remains foundational. Feitelson and Mu’alem Weil’s analysis on IBM SP2
showed how backfilling improves utilisation and “predictability” (bounded waiting time variance)
under realistic user run time estimates [37]. Later work refined the role of estimates and scheduler
predictions, but backfilling persists as the key lever for throughput on shared clusters. Production
batch systems such as Slurm implement these ideas alongside priority and fair-share policies [38].

Hybrid grid–HPC operation introduces lifecycle constraints uncommon on traditional grid sites.
Jobs on HPC must conform to site wall time and maintenance cycles; when experiments encapsulate
pilot+payload inside long-running allocations (e.g., containerised “drones”), operators often adopt
draining - stopping acceptance of new payloads before allocation expires - to mitigate job loss.
That practice protects primary workloads but leaves tail capacity idle. Several studies document
strategies to reclaim such slack: adapting pilot provisioning to backfill windows discovered by the
local scheduler [15]; shaping payloads (shorter tasks, finer granularity) to fit within remaining wall
time, demonstrated in CMS workflows on restricted resources [25,26]; and dynamically integrating
opportunistic resources by predicting resource usage to schedule in slack windows, as described
in “Lightweight Dynamic Integration of Opportunistic Resources” [39].
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Safe reclamation requires isolation. Here, cgroup-based policies integrated with container run
times and HTCondor are critical: they cap CPU and memory for opportunistic jobs, enforce
immediate yield/pre-emption and provide accurate accounting of resource usage. Measurements
from production HTCondor+Singularity deployments show that cgroup enforcement achieves
strong isolation with negligible overhead for typical scientific workloads, enabling aggressive
opportunistic strategies without harming primary jobs [40].

2.6 Summary and Open Gaps

From the examined related work (Sections 2.1 through 2.5), the following key achievements stand
out:

WLCG infrastructure and experiments (ATLAS, CMS, ALICE, LHCb) have successfully developed
hybrid models integrating HPC, grid and opportunistic resources, with containerisation and
monitoring now standard parts of the stack.

Tools like CVMFS, Singularity/Apptainer, Harvester and dashboards built on ELK / Grafana
/ time-series stores enable portability, reproducibility, observability and responsive operational
control.

Scheduling techniques (late binding pilots, draining, backfilling, opportunistic pools, cgroup isola-
tion) have been shown to reclaim idle CPU cycles while maintaining performance and respecting
site policies.

Experiment-based case studies such as "Using ATLAS@Home to Exploit Extra CPU from Busy
Grid Sites" [41] demonstrate that backfilling and volunteer/low-priority tasks can add significant
utilisation (e.g. 15-42%) without harmful side-effects.

Tools to improve pilot-provisioning (such as LHCb’s Distributed Infrastructure with Remote Agent
Control (DIRAC) Site Director) show that performance of pilot-job systems remains an active area
for throughput and latency improvements [42].

Yet, several open gaps persist; these are not fully addressed in the literature and align closely with
the problem space of this thesis:

Lifecycle-aware scheduling at the edges of allocations Many studies mention draining and
backfilling (e.g. ATLAS@Home) but less work has systematically quantified the idle CPU hours at
the tail end of containerised worker allocations (such as on HPC resources under fixed wall time)
and optimised policies to automatically schedule background jobs or pre-emptible work in those
periods.

Monitoring & accountability for mixed environments While dashboards and monitoring for
grid jobs are mature, less published work shows fine-grained observability of containerised
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“drone” or pilot worker nodes within HPC allocations: visibility into metrics such as memory
usage, I/O performance, container start-up delays, or tail idle time. Without this, optimising
scheduling/policy decisions is harder.

Non-interference guarantees and resource isolation Although cgroup and container isolation
are used, there is relatively little published evidence on guarantees (or even measurements) of
non-interference when opportunistic/background jobs run alongside primary payloads, especially
in HPC settings with shared filesystems, network, interconnect contention.

Policy and administrative constraints Access restrictions (network, software stack, privileged
operations), site wall time limits, scheduling queue policies vary widely. The literature acknowl-
edges these but often treats them as fixed constraints; few works propose adaptable scheduling or
negotiation layers that can adapt to different site constraints dynamically.

Evaluation over HL-LHC-scale workloads Many studies are done with current Run-2 or early
Run-3 workloads; as HL-LHC approaches, expected data volumes, simulation needs and resource
heterogeneity will increase by an order of magnitude. Published work often lacks performance
evaluation under those future scales, particularly in terms of efficiency of opportunistic use, waste
at lifecycle tails, or monitoring overheads when scaling up.

Quantifying the trade-offs There is limited quantitative comparison between different ap-
proaches: e.g. trade-offs between container start-up time vs image size; between background
job pre-emption cost vs idle time recovered; between monitoring granularity vs overhead. More
studies are needed to guide scheduling policies based on real data.





Chapter 3

Previous Work

3.1 Introduction

The Master of Science (MSc) project that preceded this thesis focused on the characterisation of
job execution at the WLCG Tier-2 site GoeGrid, operated in Göttingen and the development of a
prototype monitoring infrastructure. The work aimed to understand how resource consumption
patterns, particularly memory and network bandwidth, vary with the number of cores and job mix
and to establish methods for predicting usage. This was motivated by the need to ensure efficient
operation of grid resources and to prepare for the transition towards HPC-based infrastructures
such as EMMY.

The project used one year of job execution logs from GoeGrid, analysing job resource usage
across thousands of workflows. Statistical modelling was employed to identify trends in memory
and bandwidth consumption, with regression techniques used to derive predictive functions for
resource estimation. In parallel, a proof-of-concept monitoring stack based on the ELK framework
was deployed to collect, index and visualise job execution data, providing operators with an
integrated view of site performance.

This chapter summarises the main contributions of that work. Section 3.2 reviews the methodology
and results of the resource consumption analysis, highlighting predictive models and their limita-
tions. Section 3.3 outlines the design and deployment of the monitoring infrastructure, as well as
the operational lessons learned. Together, these elements provide the foundation for the current
thesis, which extends the analysis and monitoring beyond GoeGrid into the hybrid grid-HPC
context of the NHR cluster EMMY.

References to related methodologies such as statistical regression [43], workload classification [44]
and distributed monitoring frameworks [45] are included to situate the MSc contributions in a
broader context.
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3.2 Resource Consumption Analysis

The first component of the MSc project was a systematic analysis of one year of job execution
data from the Göttingen Tier-2 site GoeGrid. The dataset covered thousands of jobs submitted
by ATLAS through the PanDA system, including both production and user analysis tasks. Each
record included metadata such as job duration, core count and memory and network usage. The
primary goal was to identify patterns that could be used to predict resource demands based on job
parameters, thereby supporting scheduling decisions and site planning.

To achieve this, the analysis employed regression-based techniques, inspired by methods such
as LOESS smoothing for non-linear trend detection [43]. Job samples were binned according to
the number of allocated cores and average memory and bandwidth consumption were computed
within each bin. Regression functions were then fitted to model scaling behaviour. This approach
revealed that memory usage typically increases sub-linearly with the number of cores, reflecting
shared memory regions within multi-core tasks, whereas bandwidth demand often exhibits near-
linear scaling with core count.

Figure 3.1 (adapted from the MSc report) illustrates these relationships. The plots show regression
fits, highlighting the predictive potential of relatively simple models. However, variability within
bins was significant, especially for user analysis jobs, which often display heterogeneous resource
profiles.

In addition to regression, classification-inspired approaches were explored, following strategies
similar to workload classification challenges in HPC [44]. Jobs were grouped into categories
based on execution patterns, which improved prediction accuracy for resource estimation when
compared to a global fit. This suggested that hybrid approaches, combining regression and
classification, may be more effective for operational use.

The MSc project also emphasised the importance of understanding user behaviour in HPC and
HTCondor contexts [46]. For instance, short exploratory jobs and long production runs show
different scaling properties and sensitivities to system bottlenecks. By quantifying these distinc-
tions, the project provided practical input for scheduling strategies such as backfilling [47] and
opportunistic job execution.

The resource consumption analysis demonstrated that predictive models based on historical
data can inform both local site optimisation and broader integration with HPC resources. At
the same time, the observed variability highlighted the need for continuous data collection and
adaptive modelling, which motivated the development of the monitoring framework described in
Section 3.3.
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Figure 3.1: Job share every month from 01.08.2023 to 31.07.2024 (top). The corresponding calculated
bandwidth (middle). And the corresponding calculated memory (bottom). Calculated for 20000
cores. Processing type describes the type of the submitted job.
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3.3 Monitoring Infrastructure Setup

The second component of the MSc project focused on setting up a monitoring framework capable
of supporting both retrospective analysis and near real-time observability of job execution on
GoeGrid. While the resource consumption study in Section 3.2 relied on batch-collected data,
long-term sustainability of such efforts required automated pipelines and dashboards aligned with
best practices in distributed systems monitoring.

The monitoring setup was based on the deployment of the ELK stack, chosen for its scalability
and ecosystem maturity. Logstash agents collected job metadata, scheduler logs and system-
level statistics from worker nodes, which were forwarded to Elasticsearch for indexing. Kibana
dashboards provided interactive visualisation of resource usage patterns, complementing the static
regression plots produced during the resource analysis phase. This design enabled operators
to quickly identify anomalies such as misconfigured jobs, unbalanced resource allocation or
filesystem/network contention.

A key aspect was aligning the monitoring with established principles from large-scale distributed
system operations. Google’s Site Reliability Engineering (SRE) guidelines emphasise the “four
golden signals” (latency, traffic, errors, saturation) as minimal metrics to ensure service reliability
[45]. These ideas were adapted to the scientific computing context, where analogous metrics
included job queue latency, throughput of submitted jobs, failure rates and utilisation of cores,
memory and I/O.

In addition, the MSc project experimented with integration of external knowledge sources, such as
cloud storage logs (e.g. Amazon Web Services, Inc. (AWS) S3 [48]) and interoperability frameworks
like Reva [49], which are increasingly relevant as HEP workflows span multiple resource providers.
While only exploratory at this stage, these experiments indicated the feasibility of federating
site-level monitoring with wider data ecosystems such as ScienceMesh [50].

The monitoring pipeline also incorporated lessons from research on user behaviour and workload
diversity [46], which showed that variability in usage patterns requires flexible dashboards and
drill-down capabilities. For instance, differentiating between production and user analysis jobs
allowed the system to highlight distinct failure modes and resource demands. Furthermore,
security considerations in distributed logging [51] informed the system’s design, ensuring sensitive
logs were collected with appropriate filtering and access control.

Taken together, the MSc monitoring infrastructure provided a functional prototype of an observ-
ability stack for mixed HTCondor - Slurm sites. Although deployed at a local Tier-2, the design
principles of log centralisation, metric-based alarms and user-aware visualisation are transferable
to hybrid environments such as those targeted in this thesis.
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Chapter 4

Design and Methodology

4.1 Introduction

The preceding chapters reviewed the state of the art in distributed and HPC computing for HEP,
as well as the analysis and monitoring work that formed the basis of this project. Building on these
foundations, this chapter presents the design choices, implementation details and methodological
considerations of the work conducted in this thesis.

The guiding principle has been to adapt existing practices in large-scale scientific computing to
the specific requirements of the Göttingen environment, while ensuring that the solutions remain
interoperable with the broader WLCG ecosystem. Three main areas of development were pursued.
First, a monitoring pipeline was established to integrate heterogeneous sources of system and
application metrics into a consolidated framework, enabling both operational insight and long-
term performance analysis. Second, methods for running background jobs were designed to exploit
idle resources opportunistically, while respecting HPC scheduling constraints and minimising
interference with primary workloads. Finally, parts of the existing orchestration codebase were
refactored to improve modularity, maintainability and adaptability to the hybrid grid–HPC use
case.

The following sections describe these contributions in detail. Section 4.2 outlines the design and
deployment of the monitoring stack. Section 4.3 discusses the approach to opportunistic scheduling
of background jobs. Section 4.4 summarises the refactoring of the orchestration codebase. Together,
these developments form the methodological backbone of the work presented in this thesis.

4.2 Monitoring Pipelines

The monitoring pipeline was designed to provide continuous, structured and scalable visibility
into the execution of HTCondor workloads on the NHR cluster. Its purpose is twofold: to expose
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detailed system- and job-level metrics for analysis and to integrate seamlessly with modern log
aggregation and visualisation stacks, in particular the ELK stack (discussed in Section 3.3 and
deployed during the MSc project period). The architecture follows a layered approach, starting
with lightweight node-local agents, followed by log shipping and centralised parsing and, finally,
culminating in storage and visualisation. This section details the reasoning, design decisions and
implementation of each component in the pipeline.

4.2.1 Architecture and Design Rationale

The system adopts a hybrid deployment model that places agents either on worker nodes or on
the monitoring node, depending on where authoritative data is located. Figure 4.1 illustrates
the overall communication topology. On worker nodes, network traffic counters are inherently
local and must be collected in situ. Conversely, Condor slot states, scheduling decisions and
lifecycle events are already aggregated at the scheduler and therefore can be queried centrally.
Similarly, power consumption data can be obtained from external Intelligent Platform Management
Interface (IPMI) managed by the cluster vendor, rather than through node-resident daemons. This
separation minimises overhead on worker nodes while ensuring that monitoring remains complete
and consistent.

Data transport is deliberately file-based in the first stage: agents generate newline-delimited
JavaScript Object Notation (JSON) records written to local log files. This choice avoids the complex-
ity of direct streaming and provides resilience against transient failures of downstream collectors.
Filebeat, a lightweight shipper, forwards logs to Logstash, which parses and enriches them before
indexing in Elasticsearch. Kibana dashboards on the monitoring node provide interactive access to
the metrics. Figure 4.2 gives a linear view of this flow for the network reader component.

4.2.2 Condor Reader

The Condor reader is a C++ daemon deployed centrally on the monitoring node. It periodically
queries the HTCondor scheduler for slot and machine information using the condor_status
tool. The implementation avoids per-node agents, since all required information about job slots,
host activity and scheduling policies is already aggregated at the scheduler. This design reduces
deployment complexity and eliminates redundant monitoring load on worker nodes.

The reader produces three classes of logs:

• Configuration logs: capture changes in slot flags and static configuration attributes, useful
for detecting policy or accounting changes,

• Status logs: record slot lifecycle changes, including transitions between states (Owner,
Unclaimed, Claimed) and activities (Idle, Busy, Drained),

• Metrics logs: provide periodic counters, including available and total CPUs, disk space, child
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Figure 4.1: Component-level communication: Network Agents (NA) run on Worker Nodes (W-
Node), Condor reader/observer (CO) and Power reader/observer (PO) run centrally on the
Monitoring Node (M-Node). PO collects data from Dell Power/Energy reporting of each W-Node

process accounting groups and activity distributions.

A notable feature is lifecycle caching: hosts are identified by their name and daemon start time.
Their last known phase (alive, draining, dead) is tracked across monitoring intervals. This enables
accurate detection of draining slots and nodes removed from the pool. In addition, the reader
supports user-defined flag specifications to extract boolean or numeric Condor attributes (e.g.,
site-specific start expressions).

Power metrics are integrated through pattern-based mapping between Condor hostnames and
IPMI endpoints. For each matching rule, the reader issues an ipmi query to obtain maximum
observed power draw during the sampling period. This bridges scheduler-level slot data with
physical consumption measurements provided by the vendor.

All output is formatted as structured JSON lines with timestamps, ensuring compatibility
with downstream log processing. Example fields include cpus_free, children_busy,
group_cpus@atlas and power_max_watts. The design is inspired by earlier efforts to provide
detailed Condor monitoring for large infrastructures [46,52] but emphasises log-stream integration
and lifecycle tracking.

4.2.3 Network Reader

While the Condor reader centralises scheduler state, the network reader provides decentralised
collection of interface-level traffic statistics. Implemented in C++, it reads the host network device
counters on each worker node at configurable intervals (60 seconds by default), calculates deltas
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Figure 4.2: Example of the network agent data pipeline, showing log file generation, Filebeat
shipping, Logstash parsing, Elasticsearch indexing and Kibana visualisation. On the right the
deployment location of each component is described.

using wraparound-safe subtraction and writes results to structured logs.

Key features include:

• Interface discovery: if no interfaces are specified, all available interfaces are discovered from
/proc/net/dev,

• Pattern-to-tag mapping: an external configuration file maps Internet Protocol (IP) address
patterns to semantic tags (e.g., Wide Area Network (WAN), InfiniBand, management, internal,
external, etc.). Interfaces are automatically tagged based on their addresses, allowing traffic
to be grouped by function,

• Synthetic counters: users may define expressions that combine counters across tags or
interfaces (e.g., !WAN = eth0 + eth1), evaluated at runtime. This provides flexibility to
monitor aggregate traffic without modifying the agent code,
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• The configuration file is wildcard (*) friendly. Users can specify IP address 123.123*
and all IP addresses matching the pattern will be selected and then tagged with the pro-
vided tag (e.g. external). On practice if there are 10 nodes and their external addresses are
123.123.0.[1-10], the agent on each of the nodes will select only one interface. This
makes it easy to have just one configuration file for the cluster instead of writing one line
different configuration files for each node,

• Tagging is implemented in order to enable data aggregation even in case of different names
of interfaces serving the same purpose (e.g. eth0 on node A and eth1 on Node B both are
for the external traffic),

• Selective logging: Patterns defined with ! (e.g. !WAN) are synthetic entries composed of
other entries (e.g. eth0 and eth1) and are saved. Tags defined with a ! prefix (e.g. !eth0)
are treated as components of synthetic entries and excluded from raw per-interface logs.
They can be kept by removing ! symbol. Example entries in config can look like:

# pattern tag

10.123.* !wireless_001

10.124.* !wireless_002

!wireless_001+wireless_002 wireless

The agent outputs JSON lines containing timestamps, interface names, byte deltas and optional
tags. These are collected via Filebeat and indexed into Elasticsearch, enabling dashboards that track
both raw and aggregated bandwidth consumption. This functionality builds on long-standing
experience with distributed network monitoring in HEP sites [29, 35], but provides a configurable,
container-friendly implementation tailored for hybrid grid–HPC environments.

4.2.4 Integration with the ELK Stack

Both readers follow the same downstream path: logs are collected by Filebeat, parsed by Logstash,
indexed into Elasticsearch and visualised with Kibana. The choice of ELK is consistent with the
practice in WLCG and experiment operations, where central monitoring infrastructures have
converged on open-source pipelines with search and analytics back-ends [28, 29, 36]. By emitting
structured JSON at the source, the readers minimise parsing complexity and support schema
evolution with backward compatibility.

A critical design aspect is the decoupling of metric collection from transport. Agents remain
functional even if the monitoring node or Elasticsearch cluster is temporarily unavailable, since
logs are first persisted locally. This ensures resilience and simplifies debugging, as raw logs can be
inspected before ingestion. Additionally, using Filebeat as the shipping layer avoids embedding
network transport logic in the agents themselves, keeping them small, auditable and easy to
maintain.



36 CHAPTER 4. DESIGN AND METHODOLOGY

4.2.5 Summary

The monitoring pipelines provide a flexible and resilient mechanism to observe workload execution
at both the scheduler and network levels. Centralised Condor readers capture scheduler state,
lifecycle phases and power metrics without requiring per-node deployment. Distributed network
readers observe local traffic counters and support aggregation through tagging and expressions.
Both pipelines integrate with the ELK stack through JSON log emission, ensuring compatibility
with existing monitoring infrastructure in HEP computing. The design emphasises minimal
intrusion on worker nodes, configurability through external files and robustness under production
conditions, thereby laying the foundation for detailed performance analysis in later chapters.

4.3 Background Jobs

The background job framework was designed to exploit otherwise idle cycles on EMMY nodes
without interfering with the execution of foreground HPC workloads. This approach leverages
the concept of virtual worker nodes (drones), which are Slurm-launched containers configured
to register into the GoeGrid HTCondor pool as standard worker nodes. Within these drones,
background tasks are implemented as a dedicated slot governed by strict cgroup controls and
PanDA queue separation. The goal is to enable opportunistic harvesting of idle capacity, especially
during draining phases, while ensuring fairness and isolation for primary jobs.

4.3.1 Architecture and Drone Deployment

Drones are launched on EMMY through Slurm allocations that launch containers with HTCondor
Start Daemon (startd) processes. The launch script installs and configures cvmfsexec,
required because CVMFS must be mounted on the host. Using apptainer, the container is
started with explicit bind mounts for /cvmfs, Condor configuration files, temporary directories
and log paths. Inside, only the MASTER and STARTD daemons are run, with tini as init to ensure
proper signal handling and process reaping.

Each container registers back to the GoeGrid Condor central manager and appears indistinguish-
able from a physical worker node (except for human readable hostname pattern difference),
with names such as slot1@c-ssdlocal-xxxx.local. From the scheduler’s perspective, these
drones extend the pool dynamically using HPC resources, while respecting site-level constraints.

4.3.2 Slot Layout and Queue Separation

Within each drone, two partitionable slots are defined:

• slot1: reserved for foreground jobs, attached to the PanDA EMMY queue - production jobs,
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• slot2: reserved for background jobs, attached to the PanDA EMMY_BKG queue - lightweight
background jobs.

Queue separation is enforced through Condor start expressions and PanDA flags. Jobs are sub-
mitted with attributes AllowHPC or AllowBKGHPC, while slots are labelled with IsHPC and
IsBKGHPC.

The start policy below gates when a slot may start a job and which jobs it may accept:

START = (StartJobs =?= True) &&

((SlotID == 1 && StartSlot1 && (TARGET.AllowHPC)) ||

(SlotID == 2 && StartSlot2 && (TARGET.AllowBKGHPC)))

Key elements:

• START: The HTCondor startd policy that must evaluate to True for a claim to be made
and for a job to start on the slot. If START is False, the slot remains Unclaimed/Idle or
transitions to draining depending on other settings,

• StartJobs: A site-controlled boolean “master switch”. The expression (StartJobs =?=

True) uses the Classified Advertisement (ClassAd) “is” operator =?= so it is only True

when StartJobs exists and is True; if StartJobs is undefined or False, the whole
START becomes False. This allows pausing all starts without editing the full policy,

• SlotID: The numeric identifier of the executing slot (e.g., 1 for the partitionable foreground
slot; 2 for the background slot). It lets a single policy branch differently per slot,

• StartSlot1, StartSlot2: Per-slot toggles (booleans) that can be changed at runtime (e.g.,
via a tiny config drop-in and Signal Hang Up (SIGHUP)). In the experiments, these flips
implement the lifecycle: run foreground first (StartSlot1=True, StartSlot2=False),
then switch to background to fill the drain (StartSlot1=False, StartSlot2=True)
and, finally, disable both (StartSlot1=False, StartSlot2=False),

• TARGET....: Attributes from the jobs’ ClassAd. Here, jobs carry flags set by the ARC-CE
depending on the PanDA queue identification:

– TARGET.AllowHPC: set for jobs from the EMMY (foreground) queue.

– TARGET.AllowBKGHPC: set for jobs from the EMMY_BKG (background) queue.

Slots are labelled with IsHPC/IsBKGHPC (advertised machine attributes) and the site policy
uses the TARGET. flags to accept only the intended stream,

• Logic flow: The outer AND requires the global switch StartJobs to be True. The inner OR
selects:

1. Foreground execution: SlotID==1 && StartSlot1 && TARGET.AllowHPC.
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2. Background execution: SlotID==2 && StartSlot2 && TARGET.AllowBKGHPC.

Thus, foreground jobs can only start on slot 1 while its toggle is on and background jobs only
on slot 2 while its toggle is on.

Operationally, this enforces queue separation between native GoeGrid, EMMY (HPC) and
EMMY_BKG (background) streams and it enables the controlled “drain-fill” phases used in the
experiments.

4.3.3 cgroup-Based CPU Management

Foreground and background slots are isolated through cgroup v2 controls. The new Condor
configuration specifies:

BASE_CGROUP = ../condor.service

CGROUP_MEMORY_LIMIT_POLICY = soft

CGROUP_ALL_DAEMONS = True

STARTER_TRACK_GROUPS = True

CREATE_CGROUP_WITHOUT_ROOT = True

• BASE_CGROUP = ../condor.service: anchors the Condor-managed hierarchy under
the condor.service slice inside the enclosing Slurm job cgroup. This ensures that all
Condor slots are created as subgroups of the parent Slurm allocation, keeping accounting
and limits consistent with the batch system,

• CGROUP_MEMORY_LIMIT_POLICY = soft: instructs Condor to treat memory limits as
soft constraints. Jobs are monitored against their requested memory, but Condor does not
enforce hard termination when the limit is exceeded. This is essential for background jobs,
which opportunistically use resources but should not crash the container or node if temporary
fluctuations occur,

• CGROUP_ALL_DAEMONS = True: places not only job payloads but also Condor daemons
(startd, shadow, etc.) into the Condor cgroup tree. This provides consistent resource
accounting and prevents daemons from escaping the Slurm allocation boundaries,

• STARTER_TRACK_GROUPS = True: enables Condor starters to explicitly track and update
their jobs’ cgroup membership. Without this, processes spawned by payloads may escape
tracking. With it, every child of a job is accounted for under the correct slot subgroup, which
is crucial for accurate CPU usage measurements,

• CREATE_CGROUP_WITHOUT_ROOT = True: allows Condor to create and manage cgroups
without requiring root privileges inside the container. This is critical because drones run
as unprivileged users in the Slurm job context. The parameter ensures proper subgroup
creation even when Condor cannot escalate privileges.
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The condor.service subtree is created inside the Slurm job’s systemd slice:

/sys/fs/cgroup/system.slice/slurmstepd.scope/job_<slurm_job_id>/condor.service

Within this subtree, Condor dynamically spawns per-slot/job cgroups, such as:

condor.service/condor_tmp_local_condor_execute_slot1_[x-xxx]@c-ssdlocal-xxxx.local

Here, x is any digit between 0 and 9. Each cgroup is assigned a cpu.weight proportional to the
number of CPUs requested: Ncpus × 100. Thus, an eight-core job receives a weight of 800, while
a single-core job receives 100. Foreground jobs are naturally scheduled with their full requested
weight, ensuring proportional access to busy CPUs. Background jobs, however, are submitted as
single-core tasks (weight 100) but configured to opportunistically consume additional CPUs if idle.
The cgroup scheduler enforces that they yield immediately under contention, thereby allowing
them to backfill only genuine slack capacity.

4.3.4 Lifecycle Control and Experiment Modes

To study the effectiveness of background filling, multiple operational modes were explored:

• Control (no background): slot2 disabled, only slot1 processes foreground jobs.

• Background always-on: slot2 active from the start, continuously filling idle cores.

• Background during drain: slot1 is deactivated (drained), while slot2 continues running,
filling CPUs left idle by draining.

• Background on-demand: slot2 is activated only after draining begins, targeting the filling of
released capacity.

Slot activation is controlled by toggling the variables StartSlot1 and StartSlot2 in the
Condor configuration file 99dynamic.conf, followed by a SIGHUP signal to condor_startd.
This provides a reproducible mechanism to experiment with background job behaviour under
different lifecycle conditions. Timeline plots of slot activations and job placements (included in
Chapter 5) illustrate the CPU occupancy patterns across these modes.

4.3.5 Validation

To validate that background jobs filled idle cores without disrupting foreground tasks, a dedicated
tool, condor_cpu_watch, was developed. It traverses the condor.service cgroup tree, iden-
tifies slot-specific job subgroups and periodically reads cpu.stat. This provides time-resolved
accounting of CPU usage per slot, independent of Condor’s own counters.

This validation ensured that:

1. background jobs indeed expanded beyond one CPU only when free cores were available,
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2. foreground jobs maintained their requested CPU shares regardless of background activity,

3. draining phases showed the intended effect of background jobs opportunistically filling
released CPUs.

These measurements were put into the context of job mix on the drones at the time, in order to
verify that any difference in CPU efficiency was not caused by difference in job nature.

4.3.6 Summary

Background jobs are an additional slot attached to a distinct PanDA queue and controlled via
cgroup policy. By combining Condor start expressions, PanDA queue flags and CPU weight
enforcement, the design achieves strict separation and fair sharing. Background jobs are thereby
confined to opportunistic capacity: they fill otherwise idle CPUs during drains or low utilisation,
but immediately yield under contention. Validation with condor_cpu_watch confirmed the
effectiveness of this strategy. Together, this system provides a controlled method for integrating
background workloads into hybrid grid–HPC deployments without compromising primary job
execution.

4.4 Codebase Refactoring

The refactoring of the drone management codebase aimed to transform a complicated set of ad
hoc scripts into a modular, maintainable and declarative system. The functional goal remained
unchanged: deploy containerised HTCondor worker nodes (drones) on the NHR cluster such that
they register in the central GoeGrid HTCondor pool. The new design emphasises reproducibility,
portability and safety. This section documents the methodology and control mechanisms of the
refactored system, serving as both a technical description and a practical guide for configuration
and operation.

4.4.1 Methodology and Design Principles

The original implementation consisted of several shell and Python scripts orchestrated in sequence:
prepare directories, install CVMFS, build an Apptainer container and, finally, start HTCondor.
While functional, this model suffered from duplicated logic, hardcoded paths and site-specific
edits. The refactoring was guided by three principles:

• Declarativity: operations such as copying or creating directories are expressed in configura-
tion, not in code,

• Idempotency: the workflow can be re-run safely without manual cleanup,

• Portability: site-specific information is isolated into configuration files, enabling re-use across
environments.



4.4. CODEBASE REFACTORING 41

The refactored architecture is organised into a single Command-Line Interface (CLI) tool
(drone.py) and helper modules under common/helpers/, separating concerns such as configu-
ration parsing, container orchestration and cgroup setup.

4.4.2 Control via Command-Line Interface

The entry point drone.py exposes two subcommands:

• install Prepares the working directory and builds the container image. Typical use when
creating a new drone installation.

• submit Deploys the prepared environment, installs CVMFS with cvmfsexec, sets up
bindings and cgroups and launches the container with HTCondor. This is the command
used to actually run a drone.

Both commands accept:

• -config <path> Path to the YAML Ain’t Markup Language (YAML) configuration file.
Defaults to drone_configs/default.yml.

The submit command additionally accepts:

• -lifetime <seconds> Lifetime of the drone in seconds. Overrides the value in the
configuration. The lifetime is passed to the start script inside the container and controls when
the drone shuts down.

These options define the high-level control surface for users: prepare an environment with
install, then run it with submit.

4.4.3 Configuration File Reference

The YAML configuration file defines all aspects of deployment. Every field is interpreted at
runtime, with placeholders (e.g. <subdirectories.htcondor>) expanded dynamically. Below
is a detailed explanation.

General fields.

• node_label: short label describing the node type, used in naming conventions.

• server_label: descriptive name for the server configuration, e.g. NHRGoe_standard96.

• home_path, main_path, install_path: paths controlling where code lives, where it is
built and where installations are deployed. Placeholders like <paths.main> are resolved
automatically.

• install_basename: base directory name used when generating new working directories.
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• env_local_tmpdir: environment variable that may override the default installation path
when deploying.

• hostname: hostname to assign to the drone container. If empty, one is generated automati-
cally.

• lifetime: default drone lifetime in seconds (overridable by CLI argument).

Subdirectories. The subdirectories block defines relative paths for different functional
groups:

• container, def, sif: directories for container definitions and images,

• cvmfs, cvmfsexec: CVMFS configuration and executables,

• htcondor: configuration for HTCondor,

• shared: shared files (scripts, hosts, configs),

• grid_userdata: account and passwd/group data.

File operations. Declarative lists describe what to copy, remove, create and chmod:

• copy_list_build: files or directories copied at build time (e.g. container def files),

• copy_list_deploy: files copied at deploy time (e.g. HTCondor configs, CVMFS configs,
shared scripts),

• rmdir_list: directories to delete before redeployment (e.g. logs, lock, run),

• mkdir_list: directories to create,

• chmod_list: mode assignments for directories (e.g. 777 on logs, lock, tmp).

CVMFS repositories.

• repos: list of CVMFS repositories to mount through cvmfsexec, e.g. atlas.cern.ch,
sft.cern.ch.

HTCondor block.

• config: name of the active HTCondor configuration (subdirectory under htcondor/),

• cgroups_enabled: enables integration with cgroup,

• parent_cgroup: template for the parent Slurm job cgroup path, e.g.
/system.slice/slurmstepd.scope/job_{slurm_job_id},

• cgroup_env_gets: list of environment variables to substitute into the template (e.g.
SLURM_JOB_ID).
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• cgroup: name of the HTCondor unit inside the parent cgroup, typically condor.service.

• start_script: path to the script invoked inside the container to start HTCondor.

Container block.

• app: container runtime, typically apptainer.

• def_file: Apptainer definition file used to build the container.

• sif_file: resulting Singularity Image Format (SIF) file.

• replace_token: placeholder replaced with main_path inside the def file.

• bind: list of bind mounts, mapping host paths to container paths. Defaults include CVMFS,
HTCondor logs/run/lock directories, shared scripts and hosts file.

• flags: list of container flags. Flags can be added (e.g. -writable-tmpfs) or removed
using prefixes (omit:, remove:,̂ , ! e.g. omit:-some-unwanted-flag).

4.4.4 Cgroup Integration

The refactored system ensures that HTCondor runs inside the correct Slurm job cgroup. The
helper cgroups.py expands the parent_cgroup template with runtime variables (such as
SLURM_JOB_ID), creates a dedicated condor.service subgroup and exports the path into the
container environment. Compared to the original shell implementation, which embedded fragile
string concatenations, this approach ensures safety (refusing to operate outside /sys/fs/cgroup)
and reproducibility.

4.4.5 Comparison with Original Implementation

Table 4.1 summarises the differences. The refactored system replaces hardcoded scripts with a
clean separation of concerns and a declarative control surface.
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Aspect Original Implementation Refactored Implementation

Entry point Multiple shell and Python scripts Single CLI with
install/submit

Configuration Hardcoded paths and variables YAML with placeholders and
runtime expansion

File operations Inline shell commands Declarative
copy/rmdir/chmod lists

Cgroup setup Path concatenation in scripts Template expansion with
environment-driven substitution

Container flags Static command lines Composable list with add/re-
move semantics

Portability Site-specific edits required Configurable across sites via
YAML

Idempotency Manual cleanup required Automated cleanup and con-
fined operations

Table 4.1: Comparison of original and refactored drone management implementations.

4.4.6 Summary

The refactoring turned a complex collection of scripts into a structured, declarative and portable
codebase. Users interact only via two CLI commands and a YAML configuration. Every configura-
tion field is explicitly defined, from directory layout to container flags and CVMFS repositories.
The methodology emphasises idempotency, portability and safety, while providing a control
mechanism that is both expressive and minimal. This foundation supports reproducible drone
deployment and prepares the ground for the evaluation presented in the next chapter.
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Chapter 5

Results

5.1 Monitoring Coverage

The monitoring stack provides a comprehensive view of the cluster and drone activity, combining
data from multiple agents into a single ELK environment. The integration with Kibana enables
interactive dashboards (Fig. 5.1) where administrators can drill down to individual worker nodes,
correlate metrics and validate the correct behaviour of queue management.

At the network level, the monitoring agents deployed on the worker nodes report detailed traffic
information. This enables inspection of both aggregate bandwidth patterns and per-node traffic,
which is critical for identifying bottlenecks and ensuring that data-intensive HEP workflows do
not overwhelm particular links.

In parallel, the power monitoring pipeline collects and aggregates metrics reported by Dell’s
hardware interfaces. This provides a per-node power consumption view, which is essential for
validating the energy footprint of the deployment and for correlating workload intensity with
electrical demand. By integrating these streams, the dashboards allow combined inspection of
utilisation and consumption, providing an immediate indication of how effectively the hardware
is being used.

The state of the worker nodes within the scheduler lifecycle is also directly visible. A dedicated
dashboard shows which nodes are in Alive mode and which have transitioned to Draining. An
example plot (Fig. 5.2) illustrates this separation, where draining nodes are clearly identified
as they prepare to retire running jobs. This view is essential for validating that the scheduler
interacts correctly with the underlying HPC batch system and that drones behave as expected
when approaching their walltime limit.

In addition, the monitoring stack tracks the PanDA queue flags attached to each drone. These
flags represent the various PanDA queues, which differ mainly by their data source. Since correct
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flagging is required in order to track drones from different queue, with the purpose of accounting,
visual confirmation within the monitoring environment is useful. A dedicated dashboard (Fig. 5.3)
shows the active flags across drones. This plot confirms that queue control policies are enforced at
runtime and that jobs are always matched to the appropriate resources.

Overall, the monitoring coverage demonstrates that the pipelines provide a complete picture of
network usage, power draw, node lifecycle states and queue assignment. The combination of these
dashboards establishes both operational observability and experimental validation of the methods
developed in Chapter 4.

Figure 5.1: Overview of the Kibana monitoring interface, combining metrics from Condor readers,
network readers and power monitoring into interactive dashboards.
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Figure 5.2: Lifecycle state dashboard, showing nodes in Alive and Draining modes as reported by
the scheduler integration.

Figure 5.3: Queue flag dashboard, displaying PanDA queue attributes attached to drones and
confirming correct separation of jobs across different data-source queues.

5.2 Impact of Background Jobs

To assess the impact of background jobs on foreground workloads, a series of controlled experi-
ments was performed using the drone deployment on the NHR cluster. Each drone was configured
with two slots: slot1 for foreground jobs and slot2 for background jobs. The experiments
varied the activation of slot2 to evaluate three distinct scenarios:

• Control group: only slot1 active, no background jobs,

• Background slot active from launch: slot2 enabled throughout job execution,

• Background slot active during draining: slot2 enabled only when slot1 began draining.

CPU utilisation was tracked using the condor_cpu_watch tool, which observes cgroup counters
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of Condor slots. This provided a fine-grained view of how background jobs filled idle CPUs and
whether they interfered with foreground jobs. Figure 5.4 shows that the job share across the initial
experiments (Fig.5.5 and 5.6) was consistent.

In the control group, CPU utilisation before draining was consistently close to 100% with no
observable gaps (Fig. 5.5). When background jobs were enabled from the start, utilisation also
remained close to full capacity (Fig. 5.6). However, interference was visible: because background
jobs are scheduled as single-core tasks with a low cgroup weight, they competed with single-core
foreground jobs for CPU time. This effect manifested as a temporary drop in CPU usage attributed
to foreground jobs (0–20 CPUs), which then recovered once the background tasks completed.
The efficiency plots confirmed this effect, showing an average 5% reduction in foreground CPU
efficiency when background jobs were active (Fig. 5.7).

These observations motivated a third experiment, where background jobs were activated only
during draining. In this configuration, background tasks successfully filled otherwise idle CPUs
during the retirement phase. However, CPU utilisation before draining revealed occasional gaps
even in the absence of background jobs (Fig. 5.8). This indicated that foreground workloads alone
do not always saturate all available resources and that the initial full utilisation seen in the earlier
experiments was an exception caused by the particular job mix at the time. To check this, the job
mix of the third experiment was analysed as well (Fig. 5.9).

Repeating the three scenarios confirmed these trends (Fig. 5.10,5.11,5.12): foreground workloads
alone sometimes leave idle CPUs, background jobs from launch consistently interfere with single-
core foreground tasks and background jobs during draining avoid most interference while still
recovering wasted capacity in the final phase of execution. The job mix (Fig. 5.13) and CPU
efficiency (Fig. 5.14,5.15) were also analysed. As with the previous attempt to launch background
jobs from the start, there can be seen drop of CPU efficiency of ∼4%.

The experiments demonstrate that background jobs can improve aggregate utilisation of the HPC
resources, but they must be carefully confined to draining phases to avoid reducing efficiency of
primary production workloads.
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(a)

(b)

Figure 5.4: Job mix of foreground jobs with (a) and without (b) background jobs on the node.
Background jobs launched from the start. It can be seen that during this period there was a lot of
User Jobs, which are not typical production jobs and do not have standard resource consumption
pattern.
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Figure 5.5: Full CPUs utilised on drones with no background jobs. Before draining the foreground
jobs consume all available 192 CPUs. When the draining starts, CPU usage starts to gradually
decline, due to jobs finishing and vacating the drone.

Figure 5.6: Full CPUs utilised on drones with background jobs. Before draining all 192 CPUs are
utilised. When draining starts, foreground jobs gradually vacate the drone, as they finish, however
the CPUs used still remains almost full thanks to the background jobs. Before draining it can
be seen that foreground jobs have periodic declines, which is background job interference into
foreground jobs. The interference range is ∼0-20 CPUs (∼0-10%), which is 5% on average observed
CPU efficiency decline. Here, each "pillar" and each dip period in CPU usage before draining is a
single background job. As there is more and more free CPUs due to foreground jobs finishing after
draining, the pillars get narrower, the background jobs can use more CPUs and get faster.
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Figure 5.7: CPU efficiency distribution of foreground jobs. Foreground jobs on nodes without
background jobs (orange, dashed) and with background jobs (blue, solid) CPU efficiency is
calculated as relation of CPU time to wall time multiplied by number of CPUs registered in PanDA.

Figure 5.8: Third experiment. Background jobs were activated only after Draining phase started.
Although this eliminated background job interference into foreground jobs’ CPU usage, the
experiment revealed that foreground jobs do not occupy all CPUs before draining.
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Figure 5.9: Job mix of foreground jobs with background jobs on the node for the third experiment.
Job share significantly differs from the first 2 experiments (Fig. 5.4). This experiment has an
overwhelming presence of predictable production jobs and minimal amount of user jobs.

Figure 5.10: Experiment 4. Nodes without background jobs. Foreground jobs, as in the third
experiment do not consume all available CPUs before draining. The gaps are present, however
they are not as significant.
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Figure 5.11: Experiment 4. Nodes with background jobs launched from the start. The foreground
jobs do not occupy all available CPUs before draining. Background jobs fill the gaps. However,
background jobs still interfere with the foreground jobs and the downs in CPU usage of foreground
jobs are more significant due to this factor.

Figure 5.12: Experiment 4. Nodes with background jobs launched starting from draining. Before
draining foreground jobs do not occupy all available CPUs, even though the usage is close to
maximum (192 CPUs). After draining background jobs use CPUs to maximum.
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(a)

(b)

Figure 5.13: Experiment 4. Job mix of foreground jobs on nodes with background jobs launched
from start (a) and with background jobs launched only during draining (b). Job share significantly
differs from the first 2 experiments (Fig. 5.4). This experiment has an overwhelming presence of
predictable production jobs and minimal amount of user jobs.
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Figure 5.14: CPU efficiency distribution of foreground jobs on nodes with (blue, solid) and without
(orange, dashed) background jobs. Background jobs launched from the start.

Figure 5.15: CPU efficiency distribution of foreground jobs on nodes with (blue, solid) and without
(orange, dashed) background jobs. Background jobs launched only during draining.
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5.3 Codebase Improvements

The refactoring of the drone management framework brought a number of practical benefits in
terms of maintainability, configurability and deployment reliability. While the core functionality
of launching drones as virtual worker nodes on the NHR cluster remained unchanged, the re-
structured implementation adopted a modular and configuration-driven design that improved
day-to-day usability and long-term extensibility.

From a maintainability perspective, the monolithic scripts used in the initial implementation
were decomposed into a collection of helpers organised under the common/helpers namespace.
Subsystems such as configuration parsing, container orchestration, cgroup handling and working
directory setup were isolated into dedicated modules. This eliminated duplicated logic across
scripts and reduced the cognitive overhead for new contributors. Each component now serves a
clearly defined purpose, allowing changes to be made locally without unintended side effects.

Configurability was enhanced by introducing a YAML-based configuration layer. Parame-
ters such as container definition files, binding rules, subdirectory layout and cgroup parent
paths are expressed declaratively in default.yml. Runtime placeholders (<paths.> and
<subdirectories.>) allow configuration files to remain portable across different deployment
environments. This design makes it possible to adjust drone behaviour by editing a single configu-
ration file, avoiding the need for code modifications.

Deployment usability also improved with the introduction of a single entry point, drone.py,
which provides subcommands for installation and submission. Instead of relying on multiple shell
scripts with implicit dependencies, drones are now deployed using explicit commands:

./drone.py install --config drone_configs/default.yml

./drone.py submit --config drone_configs/default.yml --lifetime 604800

The install stage prepares the working directory and builds the container, while submit

handles deployment, CVMFS setup, cgroup configuration and container startup. The separation
of these stages mirrors the lifecycle of drone management and simplifies troubleshooting.

The design of container.py allows container flags and binding options to be added or removed
through configuration without editing Python code. Similarly, cgroups.py resolves parent
cgroups dynamically from environment variables such as SLURM_JOB_ID, enabling adaptation to
different batch systems with minimal changes. These design choices future-proof the codebase,
ensuring it can accommodate changing site requirements.

Reliability and debuggability improved due to stricter path handling and environment setup.
Functions in workdir.py enforce that all operations remain confined to the intended output di-
rectory, reducing the risk of accidental overwrites. The initialisation of the Apptainer environment
is now explicit and consistent across deployments and error messages during container startup



5.3. CODEBASE IMPROVEMENTS 59

provide clear diagnostics when misconfigurations occur.

The refactoring did not alter the high-level logic of drone lifecycle management but transformed
the codebase into a maintainable, modular and easy to read and document tool. This aligns with
the methodological goals described in Chapter 4 and eases the work for integration of Tier-2 drones
in heterogeneous HPC environments.

In addition to qualitative improvements, the refactoring introduced measurable gains in code main-
tainability and usability. The original framework consisted of over 1100 lines of mixed-purpose
scripts with duplicated logic, whereas the refactored version reduced duplication by consolidat-
ing helpers into fewer than 600 lines spread across dedicated modules. Operational complexity
decreased from four separate scripts to a single unified entry point, reducing deployment to
two explicit commands. Over 30 configuration parameters that were previously hardcoded are
now expressed declaratively in YAML, improving portability across environments. Furthermore,
input validation and path confinement added in the refactoring increased the number of explicit
error checks from 2 to 11, strengthening reliability. Finally, the introduction of comprehensive
documentation and modular functions raises the fraction of documented components from under
10% to nearly 100%, improving accessibility for future developers.





Chapter 6

Discussion and Conclusion

6.1 Discussion

This section discusses the results presented in Chapter 5 in the context of the design and methodol-
ogy developed in Chapter 4. The focus is on how the architectural choices influenced the outcomes,
what the monitoring and experiments revealed and what lessons can be drawn for production
operation.

The project is intended to integrate opportunistic HPC resources into the WLCG computing model
via HTCondor drones, while ensuring strict separation of foreground and background workloads.
A central requirement was to maximise utilisation of the booked CPUs and to provide end-to-end
observability through an ELK-based monitoring pipeline.

The choice to place Condor readers centrally on the monitoring node rather than deploying per-
node agents proved effective. Scheduler-level queries already aggregate information on slot states
and job lifecycles, eliminating redundancy and reducing deployment overhead. The trade-off is a
potential dependency on scheduler responsiveness and parsing stability, since the reader relies on
textual output of condor_status.

Similarly, the decision to transport data via file-based JSON logs shipped by Filebeat provided
resilience and debuggability. Agents remain functional during temporary outages of Elasticsearch
or Logstash and raw logs are preserved for inspection. The drawback is added disk I/O and a
small delay before data reaches dashboards, but this was acceptable for the intended monitoring
granularity.

The use of cgroup-based isolation was essential for interference limitation and for evaluating
interference between foreground and background jobs. While cgroups allowed accurate tracking
of slot usage, they also revealed a limitation: single-core background jobs, scheduled with low
weights, still competed with single-core foreground jobs. This behaviour explains the observed 5%
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efficiency loss in foreground workloads when background jobs were enabled from launch.

The dashboards confirm that the monitoring design achieved comprehensive observability. Net-
work counters at the worker-node level allowed inspection of both aggregate and per-interface
traffic, useful for diagnosing bottlenecks in data-intensive HEP workflows. Power metrics, col-
lected centrally via IPMI, provided insight into the energy footprint of workloads and enabled
correlation between utilisation and consumption. Lifecycle views, distinguishing alive and drain-
ing nodes, validated that the drones retire jobs as expected under walltime constraints. Finally, the
display of PanDA queue flags confirmed that jobs were consistently matched to their designated
queues, ensuring policy compliance.

The experiments demonstrated both the promise and the risks of background job execution.
Background tasks successfully filled idle resources during draining, recovering otherwise wasted
capacity. However, when launched from the start, they interfered with foreground single-core
jobs due to Condor’s slot scheduling and cgroup weight settings. The average 5% efficiency loss
observed across experiments shows the importance of restricting background work to periods
where it cannot impact production jobs.

A secondary finding was that foreground jobs do not always saturate all available CPUs before
draining. In some experiments, job mixes left gaps even without background jobs, highlighting
that utilisation patterns depend strongly on workload composition. This suggests that policies for
activating background slots may need to adapt dynamically to job mix conditions.

The refactored codebase significantly improved maintainability and reproducibility of the deploy-
ment. Modular helpers for configuration, containers, cgroups and workdir management reduced
duplication and made behaviour explicit. The introduction of a YAML-based configuration file
provided a single source of truth for parameters such as paths, cgroup templates, PanDA flags
and container bindings. A unified CLI interface (drone.py) simplified operations by exposing
only two commands (install and submit), each with well-defined arguments. These changes
ensured that experiments could be repeated consistently and reduced the likelihood of operator
error in complex environments.

6.2 Limitations

While the project successfully demonstrated the feasibility of integrating opportunistic HPC
resources through drones and provided comprehensive monitoring, several limitations were
observed that constrain applicability in production-scale deployments.

The behaviour of background jobs was shown to depend strongly on the mix of foreground jobs.
In some experiments, foreground jobs fully saturated resources before draining, leaving no safe
capacity for background tasks. In others, gaps were visible even without background jobs. This
variability means that fixed policies for background job activation are suboptimal. A production-
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ready system would require adaptive strategies, potentially informed by real-time monitoring of
slot utilisation and job efficiency.

Although cgroups ensured correct accounting and isolation, interference between single-core
background and foreground jobs was unavoidable due to how Condor assigns weights within
multicore slots. Even with low weights, background jobs occasionally delayed foreground tasks,
resulting in the measured 5% efficiency drop. Mitigating this effect would require either fine-
grained scheduler tuning or container-level resource throttling, neither of which was implemented
during this project.

The file-based logging approach provided resilience but introduced latency, with metrics only
becoming visible after Filebeat shipped them to Logstash and Elasticsearch. For interactive debug-
ging or short-lived jobs, this delay reduces usefulness. Furthermore, although agent overhead was
minimal, log I/O could grow significantly under very large-scale deployments, requiring careful
tuning of buffer sizes and retention policies.

The refactored codebase emphasised clarity and reproducibility but did not yet optimise for large-
scale automation or fault tolerance. For example, the lifetime of drones was specified statically
through configuration and failed drones required manual resubmission. Similarly, while configu-
ration was centralised in YAML, validation of inputs and error handling remained limited. These
factors restrict scalability without further development. However, the automation of this process is
in the plan and will be realised via the Opportunistic Balancing Daemon (COBalD)/Transparent
Adaptive Resource Dynamic Integration System (TARDIS) software [53].

6.3 Future Work

Several directions for future work have been identified to advance the system beyond the current
state.

One key improvement is the development of adaptive scheduling policies for background jobs.
Instead of relying on fixed activation rules, the system could leverage real-time monitoring of slot
utilisation, job efficiency and draining behaviour to dynamically enable or disable background
slots. Such feedback-driven control would mitigate the risk of interfering with foreground jobs
while maximising the utilisation of idle resources.

The observed interference between single-core background and foreground jobs highlights the
need for finer-grained resource allocation. Future work may investigate enhanced cgroup isolation,
such as cpu.shares or cpu.max, to throttle background job execution more aggressively when
foreground demand is high. Alternatively, scheduler-level policies in HTCondor could be tuned
to reduce contention by differentiating background tasks with explicit priorities or slot types.

Currently, drones are launched manually with static configuration parameters. A logical next step
is full automation of drone lifecycle management, including automatic instantiation, monitoring



64 CHAPTER 6. DISCUSSION AND CONCLUSION

and retirement of drones based on demand. The COBalD/TARDIS framework provides an existing
foundation for this functionality and integration with the refactored codebase is already foreseen.
This would enable a production system where drones elastically scale to match the workload while
maintaining strict queue separation.

While the ELK stack proved effective for resilient metric storage and visualisation, its batch-
oriented nature limits responsiveness. Future enhancements could include near-real-time stream-
ing pipelines for metrics requiring interactive feedback. Such an addition would complement the
existing architecture by providing low-latency views for debugging, while Elasticsearch remains
the authoritative backend for long-term analysis.

These directions point towards transforming the current work into a more advanced, scalable and
autonomous system for opportunistic use of HPC resources. By combining adaptive background
job policies, stronger isolation mechanisms, automation through COBalD/TARDIS and enhanced
monitoring, the system could significantly increase the efficiency and flexibility of resource usage
in hybrid grid-HPC environments.

6.4 Conclusion

This work demonstrated the feasibility of integrating opportunistic background jobs to maximise
the use of HPC resources in the WLCG ecosystem using containerised drones, supported by a
comprehensive monitoring stack and improved codebase. The monitoring pipelines based on
lightweight agents and the ELK stack provided detailed visibility into network traffic, power
consumption, node lifecycle states and queue assignments, enabling both operational oversight
and experimental validation.

Through controlled experiments, the role of background jobs was systematically evaluated. Results
showed that background tasks can increase overall CPU utilisation, particularly during draining
phases, but that interference with single-core foreground jobs occurs if they are enabled prematurely.
These findings underline the importance of adaptive policies that align background execution with
workload characteristics.

The refactoring of the drone management codebase introduced a structured, modular design with
centralised configuration, clearer abstractions and reproducible deployment procedures. While
not yet optimised for automation or large-scale fault tolerance, this foundation enables future
integration with orchestration frameworks such as COBalD/TARDIS.

Taken together, the project provides both a methodological framework and a practical prototype
for leveraging HPC resources in hybrid computing environments. By combining lightweight
monitoring, controlled opportunistic scheduling and modular code, it establishes a path toward
production-ready systems that enhance the efficiency and flexibility of large-scale scientific work-
flows.
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Appendix

Description of ATLAS Job Types

The ATLAS experiment utilizes a variety of job types to simulate, reconstruct and analyse data
collected from the LHC. Each job type corresponds to a specific stage in the data processing
pipeline and understanding their individual resource characteristics is essential for performance
modeling and infrastructure planning. The descriptions below are based on the 2024 ATLAS
HL-LHC Computing Model [4] and production conventions observed in this study.

evgen – Event Generation evgen jobs generate simulated particle collisions using Monte Carlo
techniques. These represent possible physics events as modeled by theoretical predictions. evgen
jobs are CPU-bound with minimal I/O and form the first stage of Monte Carlo production. They
produce HepMC-format records for subsequent simulation.

simul – Simulation simul jobs process generated events to simulate their interaction with
the ATLAS detector, using Geant4. These jobs consume large CPU resources and generate raw
hit-level data that mimics the response of the actual detector systems. Simulation is one of the
most resource-intensive stages in the workflow.

pile – Pile-up Simulation pile jobs simulate multiple proton-proton interactions occurring in
the same bunch crossing (pile-up). They overlay minimum-bias events onto signal events to reflect
realistic HL-LHC conditions. These jobs require high memory and perform significant file merging
operations.

recon – Reconstruction recon jobs convert raw detector (or simulated) data into high-level
physics objects such as tracks and jets. They are both CPU and I/O intensive and depend on
detector calibrations and alignment. Reconstruction is performed on both real and simulated data.

reprocessing reprocessing jobs re-run reconstruction using improved software, updated
detector conditions or revised calibrations. They are essential for producing consistent datasets
across time and have similar resource requirements to standard recon jobs.
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deriv – Derivation deriv jobs apply selections, slimming and skimming to reduce full re-
constructed datasets into smaller, analysis-friendly formats. This stage is crucial for managing
HL-LHC-scale data volumes and ensuring efficiency for physics groups. These jobs are moderately
I/O intensive.

pmerge – Pile-up Merge pmerge jobs merge pile-up events with hard-scatter simulation outputs,
forming combined datasets before reconstruction. These jobs require high I/O throughput and
careful synchronization of event timing metadata.

eventIndex eventIndex jobs extract metadata from processed events and build searchable
catalogs. These indexes allow efficient event lookup across distributed datasets. While rare, these
jobs often involve large input reads and are I/O bound.

gangarobot gangarobot jobs are part of the automated validation infrastructure. They regularly
test site availability, environment configuration and software compatibility. These are short jobs
with light resource footprints but are critical for operational monitoring.

panda-client panda-client jobs represent direct user submissions via the PanDA client. They
include a wide range of workflows, including custom simulations, private analyses or software
validation. Resource demands vary greatly and depend on the specific user workload.
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Figure 1: The standard software workflow of the ATLAS experiment. Processing steps are rep-
resented by blue ovals, with output formats represented as red boxes. The various steps and
data formats are described in the text. The background entering digitisation may be additional
simulated HITS files, pre-digitised RDO files or specially processed RAW detector data. [4]
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