Veröffentlicht in den Amtlichen Mitteilungen Nr. I/13 vom 05.04.2012/Nr. 13 Seite 453, Änd. AM I 32/05.10.2012 S. 1606, Änd. AM I 19/22.04.2013 S. 541, Änderung AM I 38/05.09.2013 S. 1260, Änd. AM I/12 v. 14.04.2014 S. 262

Fakultät für Physik:

Nach Beschlüssen des Fakultätsrats der Fakultät für Physik vom 30.10.2013, 04.12.2013, 08.01.2013 und 29.01.2014 sowie nach Eilentscheidungen des Dekanats der Fakultät für Physik vom 17.02.2014 und 18.02.2014 hat das Präsidium der Georg-August-Universität Göttingen am 01.04.2014 die vierte Änderung der Prüfungs- und Studienordnung für den Bachelor-Studiengang "Physik" sowie den konsekutiven Master-Studiengang "Physik" in der Fassung der Bekanntmachung vom 05.04.2012 (Amtliche Mitteilungen I Nr. 13/2012 S. 453), zuletzt geändert durch Beschluss des Präsidiums vom 27.08.2013 (Amtliche Mitteilungen I Nr. 38/2013 S. 1260), genehmigt (§ 44 Abs. 1 Satz 2 NHG in der Fassung der Bekannt-machung vom 26.02.2007 (Nds. GVBl. S. 69), zuletzt geändert durch Artikel 1 des Gesetzes vom 11.12.2013 (Nds. GVBl. S. 287); § 43 Abs. 1 Satz 5 NHG; § 37 Abs. 1 Satz 3 Nr. 5 b) NHG, § 44 Abs. 1 Satz 3 NHG).

Prüfungs- und Studienordnung für den Bachelor-Studiengang "Physik" sowie den konsekutiven Master-Studiengang "Physik" der Georg-August-Universität Göttingen

I. Allgemeines

§ 1 Geltungsbereich

- (1) Für den Bachelor-Studiengang "Physik" sowie für den konsekutiven Master-Studiengang "Physik" der Georg-August Universität Göttingen gelten die Bestimmungen der "Allgemeinen Prüfungsordnung für Bachelor- und Master-Studiengänge sowie sonstige Studienangebote an der Universität Göttingen" (APO) in der jeweils geltenden Fassung.
- (2) Diese Ordnung regelt die weiteren Bestimmungen für den Abschluss des Studiums im Bachelor-Studiengang "Physik" sowie dem konsekutiven Master-Studiengang "Physik".

§ 2 Ziele des Studiums; Zweck der Prüfungen; Tätigkeitsfelder

(1) ¹Bei dem Bachelor-Studiengang "Physik" und dem konsekutiven Master-Studiengang "Physik" handelt es sich um konsekutive Studiengänge mit aufeinander abgestimmten, berufsqualifizierenden Abschlüssen. ²In ihnen sollen die Studierenden Fachkenntnisse und methodische Fähigkeiten

erlangen, die für eine spätere Berufstätigkeit in physikalisch geprägten Berufsfeldern erforderlich sind. ³Arbeitsweise und Inhalte der Physik werden dabei so präsentiert, dass die berufsbezogene Anwendung dieser Kenntnisse und Fähigkeiten in ganz unterschiedlichen Bereichen gefördert wird. ⁴Sowohl der Bachelor-Studiengang als auch der konsekutive Master-Studiengang sind grundlagenorientiert und berücksichtigen mit einer Auswahl von aktuellen Studienprofilen die sich rasch verändernden Anforderungen der Berufspraxis. ⁵Die Ausbildung befähigt nicht nur zur Einarbeitung in verschiedene Problemstellungen und wechselnde Aufgabenbereiche im späteren Berufsleben, sondern fördert gleichzeitig eine effektive Kommunikation mit Spezialistinnen und Spezialisten anderer Ausrichtung.

(2) Bachelor-Studiengang:

¹Ziel der Bachelor-Ausbildung ist der Erwerb von Grundkenntnissen in Physik sowie Spezialkenntnissen in Physik und anderen Naturwissenschaften, die nach erfolgreichem Abschluss des Bachelor-Studiums entweder den unmittelbaren Einstieg in einige ausgesuchte Berufsfelder in Technik, Wirtschaft und Finanzwelt ermöglichen oder aber die Basis für ein anschließendes wissenschaftsorientiertes Master-Studium bilden. ²Durch die Bachelor-Prüfung wird festgestellt, ob die Kandidatinnen und Kandidaten die für den Übergang in eine physiknahe Berufspraxis notwendigen inhaltlichen und methodischen Grundlagen der Physik beherrschen und ihre Kenntnisse so weit vertieft haben, dass sie fachliche Zusammenhänge überblicken und die Fähigkeit besitzen, nach wissenschaftlichen Grundsätzen zu arbeiten und physikalische Methoden und Erkenntnisse anzuwenden.

(3) Master-Studiengang:

¹Ziel der Master-Ausbildung ist der Erwerb von wissenschaftlicher Kompetenz, die es erlaubt, Probleme in den verschiedensten Bereichen von Technik, Wirtschaft, Finanzwelt und Forschung mit Methoden der Physik zu lösen. ²Den erfolgreichen Absolventinnen und Absolventen eines Master-Studiums stehen eine Vielzahl von Tätigkeitsbereichen offen, angefangen von der Anwendung und Entwicklung physikalischer Methoden im Bereich der Hochtechnologie und Medizin, über komplexe Organisations- und Planungsaufgaben bis hin zur Grundlagenforschung an Forschungsinstituten und Universitäten. ³Durch die Master-Prüfung wird festgestellt, ob die Kandidatinnen und Kandidaten die für den Übergang in die Berufspraxis von Physikerinnen und Physikern notwendigen umfassenden Fachkenntnisse, vertiefte Spezialkenntnisse des Gebietes sowie die Fähigkeit zum selbständigen wissenschaftlichen Arbeiten erworben haben.

(4) ¹Sowohl im Bachelor-Studiengang "Physik" als auch im konsekutiven Master-Studiengang "Physik" erwerben Studierende neben der eigentlichen Fachkompetenz auch Methoden-, Sozial-, und Selbstkompetenz um auf die vielfältigen Anforderungen des Berufslebens vorzubereiten.

²Derartige Schlüsselkompetenzen können angesichts ihres fachübergreifenden Charakters sowohl integrativ im Rahmen der fachlichen Ausbildung als auch additiv in speziellen Schlüsselkompetenzmodulen erworben werden.

§ 3 Akademische Grade

- (1) Nach bestandener Bachelorprüfung im Bachelor-Studiengang "Physik" verleiht die Georg-August-Universität Göttingen den Hochschulgrad "Bachelor of Science" (abgekürzt: "B.Sc.").
- (2) Nach bestandener Masterprüfung im konsektiven Master-Studiengang "Physik" verleiht die Georg-August-Universität Göttingen den Hochschulgrad "Master of Science" (abgekürzt: "M.Sc.").

§ 4 Empfohlene Vorkenntnisse; Studienorientierung

(1) Bachelor-Studiengang:

¹Der Einstieg in das Bachelor-Studium wird durch solide Grundkenntnisse in Physik und Mathematik, wie sie z.B. in Abiturprüfungen in diesen Fächern vorausgesetzt werden, wesentlich erleichtert.
²Zur Ergänzung und zur Auffrischung der Vorkenntnisse in Mathematik sowie zur Erleichterung des Studieneinstiegs wird die Teilnahme an einem entsprechenden Vorkurs, der regelmäßig zu Beginn des Wintersemesters von der Fakultät für Physik angeboten wird, dringend empfohlen.

(2) Master-Studiengang:

Für den Master-Studiengang wird erwartet, dass die Studierenden im Umgang mit der englischen Sprache geübt sind, da physikalische Fachbücher häufig und Originalliteratur fast ausschließlich auf Englisch verfasst sind.

- (3) Studienbewerberinnen und Studienbewerbern, deren Kenntnisse nach Absätzen 1 oder 2 gering sind, wird empfohlen, sich jeweils vor Studienbeginn entsprechend fortzubilden.
- (4) Bachelor-Studiengang:

Zu Beginn jedes Wintersemesters wird von der Fakultät für Physik eine Einführungsveranstaltung für Studienanfängerinnen und Studienanfänger durchgeführt, in der über den Bachelor-Studiengang, die Prüfungs- und Studienordnung sowie den Studienplan und das Lehrangebot informiert wird.

(5) Master-Studiengang:

¹Vor Ablauf jedes Semesters wird von der Fakultät für Physik eine Informationsveranstaltung zum Master-Studiengang angeboten, die über den Bewerbungsprozess und die verschiedenen Forschungsschwerpunkte informiert. ²Zu Beginn jedes Semesters findet eine Einführungsveranstaltung zum Masterstudium statt.

§ 5 Studienberatung

- (1) ¹Die allgemeine Beratung der Studierenden erfolgt durch die zentrale Studienberatung der Universität Göttingen. ²Sie umfasst Fragen der Studieneignung, Studienzulassung, Studienmöglichkeiten sowie des Studienaufbaus; bei studienbedingten persönlichen Schwierigkeiten bietet sie auch eine psychologische Beratung an.
- (2) ¹Die studienbegleitende Fachberatung erfolgt durch die Studiendekanatsreferentin beziehungsweise den Studiendekanatsreferenten sowie durch die von der Fakultät für Physik benannte Studienfachberaterin oder den Studienfachberater sowie durch die Lehrenden. ²Die studienbegleitende Fachberatung unterstützt die Studierenden insbesondere in Fragen der Studiengestaltung, der Studientechniken und der Wahl der Studienschwerpunkte sowie bei der Bewältigung von Studienschwierigkeiten.

§ 6 Studienbeginn; Aufbau des Studiums

- (1) Das Studium beginnt im Bachelor-Studiengang "Physik" jeweils zum Wintersemester, im konsekutiven Master-Studiengang "Physik" zum Winter- oder Sommersemester.
- (2) Die Regelstudienzeit beträgt:
 - a) im Bachelor-Studiengang "Physik" 6 Semester,
 - b) im konsekutiven Master-Studiengang "Physik" 4 Semester.
- (3) ¹Die Studien- und Prüfungsleistungen sind in Pflicht-, Wahlpflicht- und Wahlmodulen zu erbringen. ²In der Modulübersicht (Anlage I) sind diese verbindlich festgelegt sowie Orientierungsmodule gekennzeichnet. ³Eine Empfehlung für den sachgerechten Aufbau des Studiums ist den in Anlage II beigefügten Studienverlaufsplänen zu entnehmen. ⁴Modulkatalog und Modulhandbuch werden für jeden Studiengang in einer gemeinsamen elektronischen Fassung (Digitales Modulverzeichnis) gesondert veröffentlicht; sie sind Bestandteil dieser Ordnung, soweit die Module in der Modulübersicht (Anlage I) aufgeführt sind.

(4) Der Bachelor-Studiengang "Physik" und der konsekutive Master-Studiengang "Physik" sind nicht teilzeitgeeignet.

§ 7 Lehrveranstaltungsarten und Vermittlungsformen

Die im Bachelor- und Master-Studium angebotenen Module setzen sich aus Lehrveranstaltungen folgender Art zusammen:

- a) Vorlesungen (V),
- b) Übungen zu Vorlesungen (Ü),
- c) Praktika (P),
- d) Seminare (S).
- a) Vorlesungen dienen der Vermittlung von wissenschaftlichem Grund- und Spezialwissen und von Methoden-Kenntnissen durch zusammenhängende Darstellung größerer Sachgebiete. Sie eröffnen den Weg zur Erweiterung und Vertiefung der Kenntnisse im Selbststudium.
- b) Übungen werden in Verbindung mit Vorlesungen angeboten. Sie geben den Studierenden durch Bearbeitung exemplarischer Probleme Gelegenheit zur Anwendung und Vertiefung des erarbeiteten Stoffes sowie zur Selbstkontrolle des Wissensstandes.
- c) Praktika haben die Vermittlung von Methodenkenntnissen, die Förderung der Einsicht in Sachzusammenhänge durch induktives Erfassen von physikalischen Zusammenhängen und die Erfahrungsbildung durch Bearbeitung praktischer Aufgabenstellungen zum Ziel. Im physikalischen Praktikum erfolgt die experimentelle Veranschaulichung, Vertiefung und Anwendung des erarbeiteten Stoffes und die Vermittlung grundlegender Kenntnisse und Fertigkeiten in der Durchführung und Auswertung physikalischer Versuche und der Interpretation ihrer Ergebnisse.
- d) Seminare sind der Behandlung spezieller fachlicher Problemstellungen gewidmet. In ihnen sollen die Studierenden lernen, komplexe wissenschaftliche Fragestellungen selbständig zu erarbeiten und hierüber vor Spezialisten des eigenen Fachs und anderer Fächer sachgerecht zu referieren, sowie die Fähigkeit zu kritischer wissenschaftlicher Diskussion erwerben.

II. Prüfungsverfahren

§ 8 Fachspezifische Prüfungsformen

Neben den nach den Bestimmungen der APO zulässigen Prüfungsleistungen können folgende fachspezifische Prüfungsleistungen vorgesehen werden:

a) Seminarvortrag:

Seminarvorträge sind Referate, die zu einem vorgegebenen Rahmenthema von einer Teilnehmerin, einem Teilnehmer oder einer Teilnehmergruppe in Form einer kurzen schriftlichen Zusammenfassung und eines Vortrages oder einer erläuternden Präsentation vor dem Teilnehmerkreis des Seminars erbracht und von der Prüferin oder dem Prüfer, die das Seminar leiten, bewertet werden. b) Schriftlicher Bericht:

In einem schriftlichen Bericht soll die Kandidatin oder der Kandidat eigenständig erbrachte Beiträge bei der Planung, Durchführung und Auswertung von Projekten dokumentieren und die Ergebnisse in fachlich angemessener Form darstellen. Der schriftliche Bericht wird von der Prüferin oder dem Prüfer, die das Projekt leiten, bewertet.

c) Protokoll:

In einem Protokoll soll die Kandidatin oder der Kandidat eigenständig erbrachte Beiträge bei der Planung, Durchführung und Auswertung von Praktikumsversuchen schriftlich dokumentieren und die Ergebnisse in fachlich angemessener Form schriftlich darstellen. Das Protokoll wird von der Prüferin oder dem Prüfer, die das Projekt leiten, bewertet.

§ 9 Wiederholbarkeit von Prüfungen

(1) Abweichend von § 16 a Abs. 1 APO können nicht bestandene oder als nicht bestanden geltende Modulprüfungen zu Modulen der Physik (Modulnummern B.Phy.[Ziffern], M.Phy.[Ziffern] und M.Phy-AM.[Ziffern]) dreimal wiederholt werden.

(2) Bachelor-Studiengang:

Im Bachelor-Studiengang "Physik" können bis zu 4 innerhalb der Regelstudienzeit im ersten Versuch bestandene Modulprüfungen aus dem Bereich der Physik (Modulnummern B.Phy.[Ziffern]) zum Zwecke der Notenverbesserung jeweils einmal wiederholt werden. Die Wiederholung muss im nächsten möglichen Prüfungszeitraum des entsprechenden Moduls erfolgen. Durch die Wiederholung kann keine Verschlechterung der Note eintreten.

§ 10 Prüfungskommission

(1) ¹Für die Organisation der Prüfungen und zur Wahrnehmung aller durch die APO sowie diese Prüfungs- und Studienordnung zugewiesenen Aufgaben bildet die Fakultät für Physik eine gemeinsame Prüfungskommission für den Bachelor-Studiengang "Physik" und den konsekutiven Master-Studiengang "Physik". ²Der Prüfungskommission gehören fünf Mitglieder an, die durch die jeweiligen Gruppenvertretungen im Fakultätsrat bestellt werden, und zwar drei Mitglieder der Hochschullehrergruppe, ein Mitglied der Mitarbeitergruppe und ein Mitglied der Studierendengrup-

pe. ³Zugleich wird für jedes Mitglied eine Stellvertreterin oder ein Stellvertreter benannt. ⁴Scheidet ein Mitglied oder eine Stellvertretung vorzeitig aus, wird für die verbleibende Amtszeit ein Ersatz bestellt.

- (2) Die Studiendekanin oder der Studiendekan ist beratendes Mitglied der Prüfungskommission.
- (3) Die Prüfungskommission wählt eine Vorsitzende oder einen Vorsitzenden sowie eine stellvertretende Vorsitzende oder einen stellvertretenden Vorsitzenden aus der Hochschullehrergruppe.
- (4) Die Prüfungskommission ist beschlussfähig, wenn neben der oder dem Vorsitzenden bzw. der oder dem stellvertretenden Vorsitzenden mindestens drei weitere stimmberechtigte Mitglieder bzw. deren Vertretungen, darunter wenigstens ein Mitglied der Hochschullehrergruppe, anwesend sind.

§ 11 Prüfungsorganisation

- (1) ¹Die Durchführung und Organisation des Prüfungsverfahrens wird unbeschadet der Kompetenzen der Studiendekanin oder des Studiendekans an das Prüfungsamt der Mathematisch-Naturwissenschaftlichen Fakultäten der Universität Göttingen delegiert. ²Dieses führt auch die Prüfungsakten.
- (2) ¹Ort und Zeit von Modulprüfungen werden vom der Studiendekanin oder dem Studiendekan auf der Grundlage von Vorschlägen der zuständigen Prüferinnen und Prüfer festgelegt, dem Prüfungsamt übermittelt und in der von der Prüfungskommission festgelegten Form durch das Prüfungsamt bekannt gegeben. ²Die Prüfungskommission legt für jeden Prüfungszeitraum einen Anmelde- und einen Abmeldezeitraum fest.
- (3) ¹Die Anmeldung zu Modulprüfungen erfolgt auf elektronischem Weg innerhalb des Anmeldezeitraums. ²Der Rücktritt ohne Angabe von Gründen (Abmeldung) ist innerhalb des Abmeldezeitraums möglich; im Übrigen ist eine Abmeldung ausgeschlossen.

III. Bachelor-Studiengang "Physik"

§ 12 Gliederung des Studiums; Studienschwerpunkte

(1) ¹Das Studium umfasst wenigstens 180 Anrechnungspunkte (European Credit Transfer and Accumulation System (ECTS-) Credits; abgekürzt: C), die sich folgendermaßen verteilen:

- a) auf die fachspezifische Grundausbildung (Pflichtbereich) 104 C, darunter
 - aa) Experimentelle und theoretische Physik (54 C),
 - bb) Grund- und Fortgeschrittenen-Praktika (17 C) und
 - cc) Mathematik (33 C),
- b) auf den Spezialisierungsbereich (Wahlpflichtbereich) 28 C, darunter 6 C in einem Spezialisierungspraktikum,
- c) auf den Profilierungsbereich (Wahlpflichtbereich) 18 C, darunter 6 C aus dem mathematischnaturwissenschaftlichen Bereich einschließlich der Physik und 12 C aus dem nichtphysikalischen Bereich,
- d) auf den Bereich Schlüsselkompetenzen (Pflichtbereich) 18 C sowie
- e) auf die Bachelorarbeit 12 C.

- (2) ¹Es kann ein Studienschwerpunkt in einem der nachfolgenden Bereiche absolviert werden:
 - a) Nanostrukturphysik,
 - b) Astro- und Geophysik,
 - c) Biophysik und Physik komplexer Systeme,
 - d) Festkörper- und Materialphysik sowie
 - e) Kern- und Teilchenphysik.

²Daneben ist ein Studium ohne Studienschwerpunkt möglich. ³Ein Studienschwerpunkt wird nur dann zertifiziert, wenn das Spezialisierungspraktikum und die Bachelorarbeit im betreffenden Studienschwerpunkt durchgeführt und aus dem jeweiligen Studienschwerpunkt zugeordneten Modulen insgesamt wenigstens 28 C erworben wurden. ⁴Das Nähere regelt die Modulübersicht (Anlage 1).

- (3) Je nach Studienziel besteht die Möglichkeit einer besonderen Profilbildung durch die Wahl eines Studienschwerpunktes nach Absatz 2:
- a) Bachelor-Abschluss als Einstieg in den Beruf:
 - ¹Für Studierende mit einem universitären Bachelor-Abschluss in Physik sollten sich interessante Möglichkeiten zum direkten Einstieg in den Beruf ergeben. ²Aussichtsreich erscheint hierzu der Studienschwerpunkt zur Nanostrukturphysik (NS), die in der Technik vielfältige Anwendungen findet.
- b) Bachelor-Abschluss als Grundlage für ein Master-Studium:
 Für Studierende, die ein konsekutives Master-Studium in Physik planen, werden die Studienschwerpunkte in den Gebieten Astro- und Geophysik (AG), Biophysik und Physik komplexer

²Das Nähere regelt die Modulübersicht (Anlage 1).

Systeme (BK), Festkörper- und Materialphysik (FM) sowie Kern- und Teilchenphysik (KT) empfohlen.

(4) Durch die Prüfungskommission können auf Antrag weitere Studienschwerpunkte mit direktem Physikbezug anerkannt werden, wenn in dem beantragten Studienschwerpunkt das Spezialisierungspraktikum und die Bachelor-Arbeit durchgeführt wurden und die für eine Zertifizierung erforderlichen Leistungen im Umfang von wenigstens 28 C erworben wurden.

§ 13 Bachelorarbeit

- (1) Durch die schriftliche Bachelorarbeit soll die Kandidatin oder der Kandidat nachweisen, dass sie oder er in der Lage ist, ein physikalisches Problem mit Standardmethoden und unter Anleitung im festgelegten Zeitraum zu bearbeiten, zu fundierten Aussagen zu gelangen und diese in sprachlicher und formaler Hinsicht angemessen darzustellen.
- (2) Voraussetzung für die Zulassung zur Bachelorarbeit ist der Erwerb von insgesamt mindestens 138 C aus Pflicht-, Wahlpflicht und Wahlmodulen des Bachelor-Studiengangs "Physik".
- (3) ¹Das vorläufige Thema der Bachelorarbeit ist mit einer vom Fakultätsrat zugelassenen Betreuerin oder einem vom Fakultätsrat zugelassenen Betreuer zu vereinbaren. ²Bei der Betreuung der Arbeit kann eine wissenschaftliche Mitarbeiterin oder ein wissenschaftlicher Mitarbeiter mitwirken. ³Findet die Kandidatin oder der Kandidat keine Betreuerin oder keinen Betreuer, so werden auf Antrag der Kandidatin oder des Kandidaten diese sowie das Thema der Bachelor-Arbeit von der Prüfungskommission bestimmt. ⁴Bei der Themenwahl ist die Kandidatin oder der Kandidat zu hören. ⁵Das Vorschlagsrecht für die Themenwahl begründet keinen Rechtsanspruch.
- (4) ¹Die Zulassung zur Bachelorarbeit ist in Schriftform bei der Prüfungskommission zu beantragen. ²Dabei sind folgende Unterlagen beizufügen:
 - a) Nachweise über die Erfüllung der in Absatz 2 genannten Voraussetzungen,
 - b) der Themenvorschlag für die Bachelorarbeit,
 - c) die schriftliche Bestätigung der Betreuerin oder des Betreuers,
 - d) ein Vorschlag für zwei Gutachterinnen oder Gutachter und
 - e) eine Erklärung, dass es nicht der Fall ist, dass die Bachelorprüfung in demselben oder einem vergleichbaren Bachelor-Studiengang an einer Hochschule im In- oder Ausland endgültig nicht bestanden wurde oder als nicht bestanden gilt.

³Die Vorschläge nach Buchstaben b) und d) sowie der Nachweis nach Buchstabe c) sind entbehrlich, wenn die oder der Studierende versichert, keine Betreuenden gefunden zu haben.

- (5) ¹Die Prüfungskommission entscheidet über die Zulassung. ²Diese ist zu versagen, wenn die Zulassungsvoraussetzungen nicht erfüllt sind oder die Bachelorprüfung in demselben oder einem vergleichbaren Studiengang an einer Hochschule im In- oder Ausland endgültig nicht bestanden wurde. ³Die Prüfungskommission bestimmt unter Abwägung des durch die Kandidatin oder den Kandidaten erbrachten Vorschlages zwei Gutachterinnen oder Gutachter der Bachelorarbeit.
- (6) ¹Nach Zulassung erfolgt die Ausgabe des Themas der Bachelorarbeit durch die Betreuerin oder den Betreuer. ²Der Zeitpunkt der Ausgabe des Themas ist aktenkundig zu machen.
- (7) ¹Die Bearbeitungszeit beträgt 14 Wochen. ²Auf Antrag der Kandidatin oder des Kandidaten kann die Prüfungskommission bei Vorliegen eines wichtigen, nicht der Kandidatin oder dem Kandidaten zuzurechnenden Grundes die Bearbeitungszeit um höchstens 4 Wochen verlängern. ³Ein wichtiger Grund liegt in der Regel bei einer Erkrankung vor, die unverzüglich anzuzeigen und durch ein Attest zu belegen ist.
- (8) ¹Das Thema kann nur einmal und nur innerhalb der ersten 4 Wochen der Bearbeitungszeit zurückgegeben werden. ²Ein neues Thema ist unverzüglich, spätestens jedoch innerhalb von 4 Wochen zu vereinbaren. ³Im Falle der Wiederholung der Bachelorarbeit ist die Rückgabe des Themas nach Satz 1 nur dann zulässig, wenn die zu prüfende Person bei dem ersten Versuch der Anfertigung der Bachelorarbeit von dieser Möglichkeit keinen Gebrauch gemacht hat.
- (9) ¹Die Bachelorarbeit ist fristgemäß beim Prüfungsamt in dreifacher Ausfertigung einzureichen. ²Sie soll nach näherer Bestimmung durch die Prüfungskommission zudem in elektronischer Form eingereicht werden. ³Der Zeitpunkt der Abgabe ist aktenkundig zu machen. ⁴Bei der Abgabe hat die Kandidatin oder der Kandidat schriftlich zu versichern, dass sie oder er die Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt hat.
- (10) ¹Das Prüfungsamt leitet die Bachelorarbeit den zwei Gutachterinnen oder Gutachtern zu. ²Jede Gutachterin und jeder Gutachter vergibt eine Note. ³Die Dauer des Bewertungsverfahrens soll 4 Wochen nicht überschreiten.

§ 14 Gesamtergebnis

- (1) Die Bachelorprüfung ist bestanden, wenn mindestens 180 Anrechnungspunkte erworben wurden und alle erforderlichen Modulprüfungen sowie die Bachelorarbeit bestanden sind.
- (2) ¹Bei der Berechnung der Bachelor-Note bleiben auf Antrag der oder des Studierenden Pflichtmodule nach Maßgabe der nachfolgenden Bestimmungen ausgenommen. ²Es können bis zu vier bestandene benotete Modulprüfungen in unbenotete Modulprüfungen umgewandelt werden, und zwar jeweils höchstens eine aus dem Physik-Grundkurs (Modulgruppe B.Phy.101-104), eine aus dem Bereich der theoretischen Physik (Modulgruppe B.Phy.201-203) und zwei aus dem Bereich der Mathematik (Module B.Mat.0011, B.Mat.0012, B.Phy.303 und B.Phy.304). ³Hiervon ausgenommen sind Module, für die im Rahmen der Wiederholungsregelung nach § 8 Abs. 2 eine Prüfung zur Notenverbesserung abgelegt wurde. ⁴Der Antrag nach Satz 2 kann frühestens nach Erreichen von 150 C und muss spätestens vor Ausgabe des Prüfungszeugnisses gestellt werden; alternativ kann der Antrag einmalig vor einem Wechsel der Hochschule gestellt werden; der Antrag kann nur einmal gestellt und nach Umsetzung im Prüfungsverwaltungssystem nicht mehr zurückgenommen werden.
- (3) Das Gesamtergebnis "Mit Auszeichnung" wird vergeben, wenn die Bachelorarbeit mit 1,0 bewertet wurde und das Gesamtergebnis der Bachelorprüfung wenigstens 2,0 beträgt.

§ 15 Freiwillige Zusatzprüfungen

- (1) ¹Die Kandidatin oder der Kandidat kann in weiteren als den erforderlichen Modulen (Zusatzmodule) Leistungsnachweise erwerben und Prüfungen ablegen. ²Diese werden in das Zeugnis und die Zeugnisergänzung (Transcript of Records) aufgenommen.
- (2) Zusatzmodule werden bei der Berechnung des Gesamtergebnisses der Bachelorprüfung nicht berücksichtigt.
- (3) Zu den Modulen im Sinne des Absatzes 1 zählen im Umfang von insgesamt bis zu 24 C auch solche des konsekutiven Master-Studiengangs "Physik", soweit aus Modulen des Bachelor-Studiengangs "Physik" bereits wenigstens 150 C erworben wurden, und soweit Ausbildungskapazität zur Verfügung steht.

IV. Konsekutiver Master-Studiengang "Physik"

§ 16 Gliederung des Studiums; Forschungsschwerpunkte

- (1) ¹Das Studium umfasst insgesamt wenigstens 120 C, die sich folgendermaßen verteilen:
 - a) auf einen Studienschwerpunkt (Wahlpflichtbereich) 50 C,
 - b) auf den Profilierungsbereich (Wahlpflichtbereich) 28 C,
 - c) auf den Bereich Schlüsselkompetenzen (Pflichtbereich) 12 C sowie
 - d) auf die Masterarbeit 30 C.
- ²Das Nähere regelt die Modulübersicht (Anlage 1).
- (2) Es muss ein Studienschwerpunkt in einem der folgenden Forschungsgebiete der Physik erfolgreich absolviert werden (Forschungsschwerpunkt):
 - a) Astro- und Geophysik (AG),
 - b) Biophysik und Physik komplexer Systeme (BK),
 - c) Festkörper- und Materialphysik (FM),
 - d) Kern- und Teilchenphysik (KT).
- (3) ¹Es werden fachübergreifende Schlüsselkompetenzen vor allem im Bereich der Methodenkompetenz erworben. ²Hier werden im Vorfeld der Masterarbeit in einem Professionalisierungspraktikum die Planung, Durchführung und Erfolgskontrolle wissenschaftlicher Projekte erlernt. ³In einem weiteren Professionalisierungspraktikum soll selbständig die Kontaktaufnahme zum beruflichen oder wissenschaftlichen Umfeld geübt und ein zeitlich begrenztes Projekt durchgeführt werden (Industriepraktikum, Teilnahme an einer wissenschaftlichen Sommerschule etc.). ⁴Beide Praktika werden vor der Masterarbeit absolviert und von deren Betreuerin oder Betreuer angeleitet. ⁵Neben diesen Pflichtmodulen können freiwillig weitere Schlüsselkompetenzmodule aus dem Angebot der Universität gewählt werden.

§ 17 Masterarbeit

(1) Durch die schriftliche Master-Arbeit soll die Kandidatin oder der Kandidat nachweisen, dass sie oder er in der Lage ist, eine physikalische Fragestellung im gewählten Forschungsschwerpunkt mit etablierten Methoden im festgelegten Zeitraum zu bearbeiten, zu wissenschaftlich fundierten Ergebnissen zu gelangen und diese in formaler und sprachlicher Hinsicht angemessen darzustellen.

- (2) Voraussetzung für die Zulassung zur Masterarbeit ist der Erwerb von insgesamt mindestens 54 C aus Pflicht- und Wahlpflichtmodulen des konsekutiven Master-Studiengangs "Physik".
- (3) ¹Die Masterarbeit muss im Bereich des gewählten Forschungsschwerpunkts angefertigt werden; sie soll im Anschluss an das entsprechende Forschungshauptpraktikum begonnen werden. ²Das vorläufige Thema der Masterarbeit ist mit einer vom Fakultätsrat zugelassenen prüfungsberechtigten Person zu vereinbaren, die auch die Arbeit betreut. ³Bei der Betreuung kann eine wissenschaftliche Mitarbeiterin oder ein wissenschaftlicher Mitarbeiter mitwirken. ⁴Findet die Kandidatin oder der Kandidat keine Betreuerin oder keinen Betreuer, so werden auf Antrag der Kandidatin oder des Kandidaten diese und das Thema der Masterarbeit von der Prüfungskommission bestimmt. ⁵Bei der Themenwahl ist die Kandidatin oder der Kandidat zu hören. ⁶Das Vorschlagsrecht für die Themenwahl begründet keinen Rechtsanspruch.
- (4) ¹Die Zulassung zur Masterarbeit ist in Schriftform bei der Prüfungskommission zu beantragen. ²Dabei sind folgende Unterlagen beizufügen:
 - a) Nachweise über die Erfüllung der Voraussetzungen nach Absatz 2,
 - a) der Themenvorschlag für die Masterarbeit,
 - b) die schriftliche Bestätigung der Betreuerin oder des Betreuers,
 - c) ein Vorschlag für zwei Gutachterinnen oder Gutachter,
 - e) eine Erklärung, dass es nicht der Fall ist, dass die Masterprüfung in demselben oder einem vergleichbaren Master-Studiengang an einer Hochschule im In- oder Ausland endgültig nicht bestanden wurde oder als nicht bestanden gilt.

³Die Vorschläge nach Buchstaben b) und d) sowie der Nachweis nach Buchstabe c) sind entbehrlich, wenn die oder der Studierende versichert, keine Betreuenden gefunden zu haben.

- (5) ¹Die Prüfungskommission entscheidet über die Zulassung. ²Diese ist zu versagen, wenn die Zulassungsvoraussetzungen nicht erfüllt sind oder die Masterprüfung in demselben oder einem vergleichbaren Studiengang an einer Hochschule im In- oder Ausland endgültig nicht bestanden wurde. ³Die Prüfungskommission bestimmt unter Berücksichtigung des durch die Kandidatin oder den Kandidaten erbrachten Vorschlages zwei Gutachterinnen oder Gutachter für die Masterarbeit.
- (6) ¹Nach Zulassung erfolgt die Ausgabe des Themas der Masterarbeit durch die Betreuerin oder den Betreuer. ²Der Zeitpunkt der Ausgabe ist aktenkundig zu machen.
- (7) ¹Die Bearbeitungszeit beträgt 6 Monate. ²Auf Antrag der Kandidatin oder des Kandidaten kann die Prüfungskommission bei Vorliegen eines wichtigen, nicht der Kandidatin oder dem Kandidaten

zuzurechnenden Grundes die Bearbeitungszeit um höchstens 8 Wochen verlängern. ³Ein wichtiger Grund liegt in der Regel bei einer Erkrankung vor, die unverzüglich anzuzeigen und durch ein Attest zu belegen ist.

- (8) ¹Das Thema kann nur einmal und nur innerhalb der ersten zwei Monate der Bearbeitungszeit zurückgegeben werden. ²Ein neues Thema ist unverzüglich zu vereinbaren. ³Im Falle der Wiederholung der Masterarbeit ist die Rückgabe des Themas nach Satz 1 nur dann zulässig, wenn die zu prüfende Person bei dem ersten Versuch der Anfertigung der Masterarbeit von dieser Möglichkeit keinen Gebrauch gemacht hat.
- (9) ¹Die Masterarbeit ist fristgemäß beim Prüfungsamt in dreifacher Ausfertigung einzureichen. ²Sie soll nach näherer Bestimmung durch die Prüfungskommission zudem in elektronischer Form eingereicht werden. ³Der Zeitpunkt der Abgabe ist aktenkundig zu machen. ⁴Bei der Abgabe hat die Kandidatin oder der Kandidat schriftlich zu versichern, dass sie oder er die Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt hat.
- (10) ¹Das Prüfungsamt leitet die Masterarbeit den beiden Gutachterinnen oder Gutachtern zu. ²Jede Gutachterin und jeder Gutachter vergibt eine Note. ³Die Dauer des Bewertungsverfahrens soll 6 Wochen nicht überschreiten.

§ 18 Gesamtergebnis

- (1) Die Masterprüfung ist bestanden, wenn mindestens 120 Anrechnungspunkte erworben wurden und alle erforderlichen Modulprüfungen sowie die Masterarbeit bestanden sind.
- (2) Das Gesamtergebnis "Mit Auszeichnung" wird vergeben, wenn die Masterarbeit mit 1,0 bewertet wurde und das Gesamtergebnis der Masterprüfung wenigstens 1,5 beträgt.

§ 19 Freiwillige Zusatzmodulprüfungen

- (1) ¹Die Kandidatin oder der Kandidat kann in weiteren als den erforderlichen Modulen (Zusatzmodule) Leistungsnachweise erwerben und Prüfungen ablegen. ²Diese werden in das Zeugnis und die Zeugnisergänzung (Transcript of Records) aufgenommen.
- (2) Zusatzmodule werden bei der Berechnung des Gesamtergebnisses der Masterprüfung nicht berücksichtigt.

§ 20 Joint Degree im Rahmen des Erasmus-Mundus-Programms in Astrophysik (Astromundus)

- (1) ¹Die Leopold-Franzens-Universität Innsbruck, die Università degli Studi di Padova (Padua, Italien), die Università degli Studi di Roma "Tor Vergata" (Rom, Italien), die Univerzitet u Beogradu (Belgrad, Serbien) und die Georg-August-Universität Göttingen (im Folgenden: Partneruniversitäten) führen gemeinsam ein Joint-Degree-Programm in Astrophysik durch. ²Es gelten die Bestimmungen dieser Prüfungs- und Studienordnung, soweit nicht nachfolgend etwas anderes geregelt ist. ³Für Module, die von einer der Partneruniversitäten angeboten werden, gelten ausschließlich die Bestimmungen dieser Partneruniversität.
- (2) Berechtigt zur Teilnahme an Studien- und Prüfungsleistungen des Joint-Degree-Programms sind Studierende des konsekutiven Master-Studiengangs "Physik" nach Maßgabe der nachfolgenden Bestimmungen.
- (3) Der Antrag auf Berücksichtigung in dem Joint-Degree-Programm ist zeitgleich mit der Bewerbung für die Zulassung zum Master-Studiengang "Physik" (in der Regel für das 3. Fachsemester) zu stellen.
- (4) Zugangsvoraussetzung ist der Nachweis von Prüfungs- und Studienleistungen aus Modulen des Joint-Degree-Programms im Umfang von insgesamt wenigstens 60 C, darunter
 - a) im Umfang von 30 C an der Leopold-Franzens-Universität Innsbruck sowie
 - b) im Umfang von 30 C an der Università degli Studi di Padova oder im Umfang von wenigstens 30 C an der Università degli Studi di Roma "Tor Vergata".
- (5) ¹Studierende im Rahmen des Joint-Degree-Programms müssen abweichend von § 15 Abs. 1 besondere Prüfungs- und Studienleistungen nach Maßgabe der Anlage 1 erfolgreich absolvieren; das Studien- und Prüfungsangebot ist vollständig englischsprachig. ²An einer der Partneruniversitäten im Rahmen des Joint-Degree-Programms absolvierte Prüfungs- und Studienleistungen werden ohne Gleichwertigkeitsprüfung anerkannt.
- (6) Wiederholungsprüfungen zu nicht bestandenen Modulprüfungen sind dergestalt anzubieten, dass sie vor Ablauf des jeweiligen Semesters abgelegt werden können.
- (7) ¹Studierende im Rahmen des Joint-Degree-Programms müssen abweichend von § 15 Abs. 1 die Masterarbeit im Umfang von 25 C sowie ein Kolloquium zur Masterarbeit im Umfang von 5 C

erfolgreich absolvieren. ²Als Betreuende der Masterarbeit, denen auch die Begutachtung der Masterarbeit obliegt, können prüfungsberechtigte Mitglieder von zwei verschiedenen Partneruniversitäten bestellt werden. ³Zuständig für die Bestellung und das Prüfungsverfahren ist diejenige Partneruniversität, an der die Erstbetreuerin oder der Erstbetreuer tätig ist; es gelten die jeweiligen Verfahrensvorschriften dieser Partneruniversität.

- (8) ¹Die Masterarbeit ist in englischer Sprache anzufertigen. ²Im Kolloquium in englischer Sprache hat die oder der zu Prüfende in einer sich an ihren oder seinen einführenden Vortrag (ca. 30 Minuten) anschließenden Diskussion (ca. 30 Minuten) über ihre oder seine Masterarbeit nachzuweisen, dass sie oder er in der Lage ist, fächerübergreifend und problembezogen Fragestellungen selbständig auf wissenschaftlicher Grundlage zu bearbeiten und in das Gesamtgebiet der Astrophysik einzuordnen. ³Die Dauer des Kolloquiums beträgt insgesamt ca. 60 Minuten. ⁴Für die Zulassung zum Kolloquium müssen die Masterarbeit von den Gutachterinnen beziehungsweise Gutachtern mit mindestens "ausreichend" (4,0) bewertet und alle erforderlichen Modulprüfungen erfolgreich absolviert worden sein. ⁵Das Kolloquium soll innerhalb von sechs Wochen nach Abgabe der Masterarbeit durchgeführt werden; Prüferinnen oder Prüfer sind die Gutachterinnen oder Gutachter der Masterarbeit.
- (9) ¹Nach bestandener Masterprüfung verleihen diejenigen Partneruniversitäten, an denen die oder der Geprüfte Studien- und Prüfungsleistungen des Joint-Degree-Programms im Umfang von wenigstens 30 C, im Falle der Univerzitet u Beogradu abweichend von wenigstens 15 C, erfolgreich absolviert hat, jedoch nur die zuletzt besuchte der italienischen Partneruniversitäten, gemeinsam den Hochschulgrad "Master of Science" (abgekürzt "M.Sc."). ²Diejenige Partneruniversität, an der das Kolloquium zur Masterarbeit erfolgreich absolviert wurde, stellt im Namen der Partneruniversitäten nach Satz 1 eine Urkunde in englischer Sprache über den gemeinsam verliehenen Hochschulgrad aus. ³Auf Antrag wird ferner eine Urkundenübersetzung in deutscher, italienischer oder serbischer Sprache ausgestellt.

V. Übergangs- und Schlussbestimmungen

§ 21 Inkrafttreten; Übergangsbestimmungen

(1) Diese Ordnung tritt nach ihrer Bekanntmachung in den Amtlichen Mitteilungen I der Georg-August-Universität Göttingen rückwirkend zum 01.04.2012 in Kraft.

- (2) Gleichzeitig treten die Prüfungsordnung für den Bachelor-Studiengang Physik und den Master-Studiengang Physik in der Fassung der Bekanntmachung vom 13.09.2006 (Amtliche Mitteilungen Nr. 17/2006 S. 1349), zuletzt geändert durch Beschluss des Präsidiums vom 25.10.2011 (Amtliche Mitteilungen I Nr. 16/2011 S. 1009) sowie die zu ihrer Ergänzung erlassene Studienordnung für den Bachelor-Studiengang Physik und den Master-Studiengang Physik in der Fassung der Bekanntmachung vom 13.09.2006 (Amtliche Mitteilungen Nr. 17/2006 S. 1375), zuletzt geändert durch Beschluss des Präsidiums vom 12.04.2011 (Amtliche Mitteilungen Nr. 7/2011 S. 347) außer Kraft.
- (3) ¹Studierende, welche ihr Studium vor Inkrafttreten dieser Prüfungs- und Studienordnung aufgenommen haben, werden nach den Bestimmungen dieser Prüfungs- und Studienordnung geprüft; bereits bestandene Prüfungen und Studienverläufe bleiben unberührt. ²Abweichend von Satz 1 werden Studierende im Sinne des Satzes 1 auf Antrag, der innerhalb von sechs Monaten nach Inkrafttreten dieser Prüfungs- und Studienordnung zu stellen ist, nach der Prüfungsordnung und der zu ihrer Ergänzung erlassenen Studienordnung im Sinne des Absatzes 2 geprüft. ³Sind auf Antrag nach Satz 2 die Ordnungen im Sinne des Absatzes 2 anzuwenden, gilt dies im Falle noch abzulegender Prüfungen nicht für Modulübersichten, -beschreibungen, -handbücher sowie digitale Modulverzeichnisse, sofern nicht der Vertrauensschutz einer oder eines Studierenden eine abweichende Entscheidung durch die Prüfungskommission gebietet. ⁴Eine abweichende Entscheidung ist insbesondere in den Fällen möglich, in denen eine Prüfungsleistung wiederholt werden kann oder ein Pflicht- oder erforderliches Wahlpflichtmodul wesentlich geändert oder aufgehoben wurde. ⁵Die Prüfungskommission kann hierzu allgemeine Regelungen treffen. ⁶Prüfungen nach einer Ordnung im Sinne des Absatzes 2 werden im Bachelor-Studiengang "Physik" letztmals im Wintersemester 2014/15, im konsekutiven Master-Studiengang "Physik letztmals im Wintersemester 2013/14 abgenommen.
- (4) ¹Studierende, die ihr Studium vor Inkrafttreten einer Änderung der vorliegenden Ordnung begonnen haben und ununterbrochen im Bachelor-Studiengang "Physik" bzw. im konsekutiven Master-Studiengang "Physik" immatrikuliert waren, werden nach der Prüfungs- und Studienordnung in der vor Inkrafttreten der Änderung geltenden Fassung geprüft. ²Dies gilt im Falle noch abzulegender Prüfungen nicht für die §§ 12 und 16, Modulübersichten, -beschreibungen, -kataloge und -handbücher, sofern nicht der Vertrauensschutz einer oder eines Studierenden eine abweichende Entscheidung durch die Prüfungskommission gebietet. ³Eine abweichende Entscheidung ist insbesondere in den Fällen möglich, in denen eine Prüfungsleistung wiederholt werden kann oder ein Pflicht- oder erforderliches Wahlpflichtmodul wesentlich geändert oder aufgehoben wurde. ⁴Die Prüfungskommission kann hierzu allgemeine Regelungen treffen. ⁵Prüfungen nach einer Prüfungs-

und Studienordnung in der vor Inkrafttreten einer Änderung gültigen Fassung werden im Bachelor-Studiengang "Physik" letztmals im siebten, im konsekutiven Master-Studiengang "Physik" letztmals im fünften Semester nach Inkrafttreten dieser Änderung abgenommen. ⁶Auf Antrag werden Studierende nach Satz 1 insgesamt nach den Bestimmungen der geänderten Ordnung geprüft.

Anlage I Modulübersicht

A. Bachelor-Studiengang "Physik"

Es müssen nach Maßgabe der folgenden Bestimmungen wenigstens 180 C erworben werden.

I. Pflichtmodule (104 C)

Kerncurriculum

1. Pflichtmodule aus der experimentellen und theoretischen Physik

Es müssen folgende Pflichtmodule im Umfang von insgesamt 54 C erfolgreich absolviert werden:

B.Phy.101	Physik I	(9 C/ 8 SWS)
B.Phy.102	Physik II	(9 C/ 8 SWS)
B.Phy.103	Physik III	(6 C/ 6 SWS)
B.Phy.104	Physik IV	(6 C/ 6 SWS)
B.Phy.201	Analytische Mechanik	(8 C/ 6 SWS)
B.Phy.202	Quantenmechanik I	(8 C/ 6 SWS)
B.Phy.203	Statistische Physik	(8 C/ 6 SWS)

Die Module B.Phy.101 und B.Phy.102 sind Orientierungsmodule.

2. Pflichtmodule aus dem Bereich der Grund- und Fortgeschrittenen-Praktika

Es müssen folgende Pflichtmodule im Umfang von insgesamt 17 C erfolgreich absolviert werden:

B.Phy.410	Physikalisches Grundpraktikum	(12 C/ 12 SWS)
B.Phy.411	Physikalisches Fortgeschrittenenpraktikum	(5 C/ 4 SWS)

3. Pflichtmodule aus der Mathematik

Es müssen folgende Pflichtmodule im Umfang von insgesamt 33 C erfolgreich absolviert werden:

B.Mat.0011	Analysis I	(9 C/ 6 SWS)
B.Mat.0012	Analytische Geometrie und Lineare Algebra I	(9 C/ 6 SWS)
B.Phy.303	Mathematik für Physiker I	(9 C/ 6 SWS)
B.Phy.304	Mathematik für Physiker II	(6 C/ 6 SWS)

II. Wahlpflichtmodule (46 C)

Spezialisierungs- und Profilierungsbereiche ohne Studienschwerpunktbildung

1. Spezialisierungsbereich

Es müssen Wahlpflichtmodule im Umfang von insgesamt mindestens 28 C nach Maßgabe der folgenden Bestimmungen erfolgreich absolviert werden.

a. Spezialisierungspraktikum

Es muss eines der folgenden Spezialisierungspraktika im Schwerpunkt der Bachelorarbeit im Umfang von 6 C erfolgreich absolviert werden:

B.Phy.403	Spezialisierungspraktikum Nanostrukturphysik	(6 C/ Block)
B.Phy.404	Spezialisierungspraktikum Betreuung von Netzwerken	(6 C/ Block)
	und Netzwerknutzern	

B.Phy.405	Spezialisierungspraktikum Astro- und Geophysik	(6 C/ Block)
B.Phy.406	Spezialisierungspraktikum Biophysik und Physik kom-	(6 C/ Block)
	plexer Systeme	
B.Phy.407	Spezialisierungspraktikum Festkörper- und Material-	(6 C/ Block)
	physik	
B.Phy.408	Spezialisierungspraktikum Kern- und Teilchenphysik	(6 C/ Block)

b. Einführungen

Es müssen mindestens zwei der folgenden Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden:

B.Phy.501	Einführung in die Astro- und Geophysik	(6 C/ 6 SWS)
B.Phy.502	Einführung in die Biophysik und Physik komplexer Systeme	(6 C/ 6 SWS)
B.Phy.503	Einführung in die Festkörper- und Materialphysik	(6 C/ 6 SWS)
B.Phy.504	Einführung in die Kern- und Teilchenphysik	(6 C/ 6 SWS)

c. Spezielle Themen

Es müssen mindestens zwei der folgenden oder der nach Buchstabe b. noch nicht belegten Module im Umfang von insgesamt wenigstens 10 C erfolgreich absolviert werden;

B.Phy.5001	Die Vermittlung und Untersuchung von strömungsphysi-	(6 C/4 SWS)
	kalischen Vorgängen im Experiment,	
	T-91	

	Teil I	
B.Phy.5002	Die Vermittlung und Untersuchung von strömungsphysi-	(6 C/4 SWS)
	kalischen Vorgängen im Experiment – Teil II	
B.Phy.5003	Sammlung und Physikalisches Museum	(3 C/2 SWS)
B.Phy.5501	Aerodynamik	(6 C/ 4SWS)
B.Phy.5502	Aktive Galaxien	(3 C/2 SWS)
B.Phy.5503	Astrophysikalische Spektroskopie	(3 C/2 SWS)
B.Phy.5504	Computational Physics	(6 C/4 SWS)
B.Phy.5505	Data Analysis in Astrophysics	(3 C/2 SWS)
B.Phy.5506	Einführung in die Strömungsmechanik	(6 C/4 SWS)
B.Phy.5507	Elektromagnetische Tiefenforschung	(3 C/2 SWS)
B.Phy.5508	Geophysikalische Strömungsmechanik	(4 C/4 SWS)
B.Phy.5509	Einführung in die theoretische Astrophysik	(3 C/2 SWS)
B.Phy.5510	Physics of the Interstellar Medium	(3 C/2 SWS)
B.Phy.5511	Magnetohydrodynamik	(3 C/2 SWS)
B.Phy.5512	Massearme Sterne, Braune Zwerge und Planeten	(3 C/2 SWS)
B.Phy.5513	Numerische Strömungsmechanik	(6 C/4 SWS)
B.Phy.5514	Physics of the Interior of the Sun and Stars	(3 C/2 SWS)
B.Phy.5515	Transportmechanismen in heterogenen Medien	(3 C/2 SWS)
B.Phy.5516	Physik der Galaxien	(3 C/2 SWS)

B.Phy.5517	Physik der Sonne, Heliosphäre und des Weltraumwetters Schlüsselwissen	(3 C/2 SWS)
B.Phy.5518	Physik der Sonne, Heliosphäre und des Weltraumwetters: Weltraumwetter Anwendungen	(3 C/2 SWS)
B.Phy.5519	Plattentektonik und Geophysikalische Exploration	(3 C/2 SWS)
B.Phy.5520	Seismology of the Sun and Stars	(3 C/2 SWS)
B.Phy.5521	Seminar zu einem Thema der Geophysik	(4 C/2 SWS)
B.Phy.5522	Solar Eclipses and Physics of the Corona	(3 C/2 SWS)
B.Phy.5523	Allgemeine Relativitätstheorie	(6 C/6 SWS)
B.Phy.5524	Seminar über Fortgeschrittene Themen der ART	(4 C/2 SWS)
B.Phy.5525	Seminar über Solitonen	(4 C/2 SWS)
B.Phy.5527	Computational Cosmology	(6 C/4 SWS)
B.Phy.5528	Black Holes in Astrophysics and Cosmology	(4 C/2 SWS)
B.Phy.5529	Galaxies and the Intergalactic Medium	(4 C/2 SWS)
B.Phy.5531	Entstehung von Sonnensystemen	(3 C/2 SWS)
B.Phy.5532	Symmetrien und Nichtlineare Differenzialgleichungen in der Physik	(3 C/4 SWS)
B.Phy.5533	Solar and Stellar Activity	(6 C/4 SWS)
B.Phy.5535	Fluid dynamics, nonlinear dynamics and turbulence	(3 C/2 SWS)
B.Phy.5538	Stellar Atmospheres	(6 C/4 SWS)
B.Phy.5539	Physics of Stellar Atmospheres	(3 C/2 SWS)
B.Phy.5540	Introduction to Cosmology	(3 C/2 SWS)
B.Phy.5601	Theoretical and Computational Neuroscience I	(3 C/2 SWS)
B.Phy.5602	Theoretical and Computational Neuroscience II	(3 C/2 SWS)
B.Phy.5603	Einführung in die Laserphysik	(3 C/2 SWS)
B.Phy.5604	Foundations of Nonequilibrium Statistical Physics	(3 C/2 SWS)
B.Phy.5605	Grundlagen Computational Neuroscience	(3 C/2 SWS)
B.Phy.5606	Mechanik der Zelle	(3 C/2 SWS)
B.Phy.5607	Mechanik und Dynamik des Zytoskeletts	(4 C/2 SWS)
B.Phy.5608	Mikro- und Nanofluidik	(3 C/2 SWS)
B.Phy.5609	Moderne Optik (Optik II)	(6 C/4 SWS)
B.Phy.5611	Optische Spektroskopie und Mikroskopie	(3 C/2 SWS)
B.Phy.5612	Physics of Extreme Events	(3 C/2 SWS)
B.Phy.5613	Physik der weichen kondensierten Materie	(6 C/4 SWS)
B.Phy.5614	Proseminar Computational Neuroscience/ Neuroinformatik	(5 C/2 SWS)
B.Phy.5615	Biologie und Biochemie für Physiker	(3 C/2 SWS)
B.Phy.5616	Biophysik der Zelle – Physik auf kleinen Skalen	(6 C/4 SWS)
B.Phy.5617	Seminar zur Physik der weichen kondensierten Materie	(4 C/2 SWS)
,	22a. 22ya dar Halanan Kandallalalalalalala	(. 5/2 511 5)

B.Phy.5618	Seminar zur Biophysik der Zelle	(4 C/2 SWS)
B.Phy.5619	Seminar zur Mikro- und Nanofluidik	(4 C/2 SWS)
B.Phy.5620	Sportphysik	(3 C/2 SWS)
B.Phy.5621	Stochastic Processes	(3 C/2 SWS)
B.Phy.5622	Weiterführende Optik	(3 C/2 SWS)
B.Phy.5623	Theoretische Biophysik	(6 C/4 SWS)
B.Phy.5624	Introduction to Theoretical Neuroscience	(3 C/2 SWS)
B.Phy.5625	Röntgenphysik	(6 C/4 SWS)
B.Phy.5628	Pattern Formation	(6 C/4 SWS)
B.Phy.5629	Nichtlineare Dynamik und Zeitreihenanalyse	(6 C/4 SWS)
B.Phy.5630	Nichtlineare Dynamik und Biokomplexität	(4 C/2 SWS)
B.Phy.5631	Selbstorganisation in der Physik und der Biologie	(4 C/2 SWS)
B.Phy.5632	Seminar über aktuelle Fragen zur Turbulenzforschung	(4 C/2 SWS)
B.Phy.5635	Introduction to Chaotic Behavior I: Dissipative Systems	(3 C/2 SWS)
B.Phy.5636	Introduction to Chaotic Behavior II: Hamiltonian Systems	(3 C/2 SWS)
B.Phy.5637	Computer simulation methods in statistical physics	(3 C/2 SWS)
B.Phy.5638	Artificial Intelligence Robotics: An Introduction	(3 C/2 SWS)
B.Phy.5639	Optische Messtechnik	(3 C/2 SWS)
B.Phy.5640	Principles of self-organization in biophysics	(6 C/4 SWS)
B.Phy.5641	Theorie und Praxis der Mikroskopie	(4 C/2 SWS)
B.Phy.5642	Experimentelle Methoden in der Biophysik	(3 C/2 SWS)
B.Phy.5643	Seminar Experimentelle Methoden in der Biophysik	(3 C/2 SWS)
B.Phy.5644	Elasticity, multiphase flow and fracture	(3 C/2 SWS)
B.Phy.5646	Klimaphysik	(6 C/4 SWS)
B.Phy.5647	Physik der Mischgetränke	(3 C/2 SWS)
B.Phy.5648	Theoretische und computergestützte Biophysik	(3 C/2 SWS)
B.Phy.5649	Biomolekulare Physik und Simulationen	(3 C/2 SWS)
B.Phy.5701	Weiche Materie: Flüssigkristalle	(3 C/2 SWS)
B.Phy.5702	Dünne Schichten	(3 C/2 SWS)
B.Phy.5703	Vorlesungszyklus: Eigenschaften fester Stoffe und	(3 C/2 SWS)
	grundlegende Phänomene	
B.Phy.5704	Magnetismus	(6 C/4 SWS)
B.Phy.5705	Magnetismus Seminar	(4 C/2 SWS)
B.Phy.5707	Nanoscience	(3 C/2 SWS)
B.Phy.5708	Physik der Nanostrukturen	(3 C/2 SWS)
B.Phy.5709	Seminar on Nanoscience	(4 C/2 SWS)
B.Phy.5710	Spintransport und Dynamik	(3 C/2 SWS)
B.Phy.5711	Starkkorrelierte Elektronensysteme	(4 C/2 SWS)
B.Phy.5712	Tieftemperaturphysik	(3 C/2 SWS)

B.Phy.5713	Supraleitung	(3 C/2 SWS)
B.Phy.5714	Introduction to Solid State Theory	(6 C/6 SWS)
B.Phy.5715	Quantum Simulators	(3 C/2 SWS)
B.Phy.5801	Classical field theory	(6 C/6 SWS)
B.Phy.5804	Quantenmechanik II	(6 C/6 SWS)
B.Phy.5805	Quantenfeldtheorie I	(6 C/6 SWS)
B.Phy.5806	Spezielle Relativitätstheorie	(3 C/2 SWS)
B.Phy.5807	Physik der Teilchenbeschleuniger	(3 C/3 SWS)
B.Phy.5808	Wechselwirkung zwischen Strahlung und Materie - De-	(3 C/3 SWS)
	tektorphysik	
B.Phy.5809	Hadron-Collider-Physik	(3 C/3 SWS)
B.Phy.5810	Physik des Higgs-Bosons	(3 C/3 SWS)
B.Phy.5811	Statistische Methoden der Datenanalyse	(3 C/3 SWS)
B.Phy.5812	Physik des Top-Quarks	(3 C/3 SWS)
B.Phy.5813	Teilchenphysik 2 - von und mit Quarks	(6 C/6 SWS)
B.Phy.5814	Particle Physics 3 - of and with leptons	(6 C/6 SWS)
B.Phy.551	Spezielle Themen der Astro- und Geophysik I	(6 C/ 6 SWS)
B.Phy.552	Spezielle Themen der Astro- und Geophysik II	(6 C/ 6 SWS)
B.Phy.553	Spezielle Themen der Astro- und Geophysik III	(3 C/ 3 SWS)
B.Phy.561	Spezielle Themen der Biophysik und Physik	(6 C/ 6 SWS)
	komplexer Systeme I	
B.Phy.562	Spezielle Themen der Biophysik und Physik komplexer	(6 C/ 6 SWS)
	Systeme II	
B.Phy.563	Spezielle Themen der Biophysik und Physik komplexer	(3 C/ 3 SWS)
	Systeme III	
B.Phy.571	Spezielle Themen der Festkörper- und Materialphysik I	(6 C/ 6 SWS)
B.Phy.572	Spezielle Themen der Festkörper- und Materialphysik II	(6 C/ 6 SWS)
B.Phy.573	Spezielle Themen der Festkörper- und Materialphysik III	(3 C/ 3 SWS)
B.Phy.581	Spezielle Themen der Kern- und Teilchenphysik I	(6 C/ 6 SWS)
B.Phy.582	Spezielle Themen der Kern- und Teilchenphysik II	(6 C/ 6 SWS)
B.Phy.583	Spezielle Themen der Kern- und Teilchenphysik III	(3 C/ 3 SWS)

2. Profilierungsbereich

Es müssen Wahlpflichtmodule im Umfang von insgesamt mindestens 18 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

a. Es müssen aus dem Lehrangebot der mathematisch-naturwissenschaftlichen Fakultäten Module im Umfang von insgesamt wenigstens 6 C erfolgreich absolviert werden. Wählbar

sind insbesondere die nachfolgenden Module; darüber hinaus wird ein Verzeichnis wählbarer Module durch die Fakultät für Physik in geeigneter Weise bekannt gemacht.

B.Bio.112	Biochemie	(10 C/ 7 SWS)
B.Bio.118	Mikrobiologie	(10 C/ 7 SWS)
B.Che.1302.1	Chemisches Gleichgewicht (Thermodynamik	(6 C / 4 SWS)
	und Statistik	
B.Che.1401	Atombau und Chemische Bindung	(5 C / 4 SWS)
B.Che.2301	Chemische Reaktionskinetik	(6 C / 4 SWS)
B.Che.9105	Allgemeine und Anorganische Chemie für	(4 C / 4 SWS)
	Physiker	
B.Phy.606	Elektronikpraktikum für Naturwissenschaftler	(6 C/ 6 SWS)
B.Phy.607	Akademisches Schreiben für Physiker/innen	(4 C / 2 SWS)
B.Phy.608	Scientific Literacy – Integration von Naturwis-	(4 C / 2 SWS)
	senschaften in die Gesellschaft und Po-	
	litik	

b. Es müssen Module im Umfang von insgesamt wenigstens 12 C aus dem Lehrangebot der Universität außerhalb der Fakultät für Physik erfolgreich absolviert werden. Wählbar sind insbesondere die nachfolgenden Module sowie Angebote aufgrund der Prüfungsordnung für Studienangebote der Zentralen Einrichtung für Sprachen und Schlüsselqualifikationen (ZESS); darüber hinaus wird ein Verzeichnis wählbarer Module durch die Fakultät für Physik in geeigneter Weise bekannt gemacht.

B.WIWI-BWL.0004 Produktion und Logistik (6 C / 4 SWS) B.WIWI-OPH.0005 Jahresabschluss (6 C / 4 SWS) B.WIWI-WIN.0001 Management der Informationssysteme (6 C / 2 SWS) B.WIWI-WIN.0004 Informationsverarbeitung in Dienstleistungsbetrieben B.WIWI-WIN.0011 Programmiersprache C# (4 C / 2 SWS)	B.WIWI-BWL.0002	Interne Unternehmensrechnung	(6 C / 4 SWS)
B.WIWI-WIN.0001 Management der Informationssysteme (6 C / 2 SWS) B.WIWI-WIN.0004 Informationsverarbeitung in Dienstleistungsbetrieben (6 C / 2 SWS)	B.WIWI-BWL.0004	Produktion und Logistik	(6 C / 4 SWS)
B.WIWI-WIN.0004 Informationsverarbeitung in Dienstleistungs- (6 C / 2 SWS) betrieben	B.WIWI-OPH.0005	Jahresabschluss	(6 C / 4 SWS)
betrieben	B.WIWI-WIN.0001	Management der Informationssysteme	(6 C / 2 SWS)
	B.WIWI-WIN.0004	Informationsverarbeitung in Dienstleistungs-	(6 C / 2 SWS)
B.WIWI-WIN.0011 Programmiersprache C# (4 C / 2 SWS)		betrieben	
	B.WIWI-WIN.0011	Programmiersprache C#	(4 C / 2 SWS)

c. Anstelle der Module nach Buchstaben a. und b. können auf Antrag, der an die Studiendekanin oder den Studiendekan der Fakultät für Physik zu richten ist, andere Module (Alternativmodule) nach Maßgabe der nachfolgenden Bestimmungen absolviert werden. Dem Antrag ist die Zustimmung der Studiendekanin oder des Studiendekans der Fakultät oder Lehreinheit, die das Alternativmodul anbietet, beizufügen. Die Entscheidung trifft die Studiendekanin oder der Studiendekan der Fakultät für Physik. Der Antrag kann ohne Angabe von Gründen abgelehnt werden; ein Rechtsanspruch der Antragstellerin oder des Antragstellers auf Zulassung eines Alternativmoduls besteht nicht.

Spezialisierungs- und Profilierungsbereiche mit Studienschwerpunktbildung

3. Studienschwerpunkte

Der Bachelor-Studiengang "Physik" kann mit einem der fünf Studienschwerpunkte Nanostrukturphysik, Astro- und Geophysik, Biophysik und Physik komplexer Systeme, Festkörperund Materialphysik oder Kern- und Teilchenphysik studiert werden. Für die Zertifizierung eines Schwerpunkts müssen im Rahmen der Belegbedingungen nach Nrn. 1 und 2 jeweils mindestens 28 C der insgesamt zu erbringenden Leistungen im Umfang von 46 C nach Maßgabe der folgenden Bestimmungen im jeweiligen Schwerpunkt erfolgreich absolviert werden und die Bachelorarbeit im jeweiligen Schwerpunktbereich angefertigt werden.

a. Studienschwerpunkt Nanostrukturphysik (wenigstens 28 C)

aa. Es müssen folgende zwei Wahlpflichtmodule im Umfang von insgesamt 12 C erfolgreich absolviert werden:

B.Phy.503	Einführung in die Festkörper- und Materialphysik	(6 C/ 6 SWS)
B.Phy.403	Spezialisierungspraktikum Nanostrukturphysik	(6 C/ Block)

bb. Es müssen wenigstens zwei der folgenden Wahlpflichtmodule im Umfang von insgesamt wenigstens 10 C erfolgreich absolviert werden:

B.Phy.5701	Weiche Materie: Flüssigkristalle	(3 C/2 SWS)
B.Phy.5702	Dünne Schichten	(3 C/2 SWS)
B.Phy.5703	Vorlesungszyklus: Eigenschaften fester Stoffe und grund-	(3 C/2 SWS)
	legende Phänomene	
B.Phy.5704	Magnetismus	(6 C/4 SWS)
B.Phy.5705	Magnetismus Seminar	(4 C/2 SWS)
B.Phy.5707	Nanoscience	(3 C/2 SWS)
B.Phy.5708	Physik der Nanostrukturen	(3 C/2 SWS)
B.Phy.5709	Seminar on Nanoscience	(4 C/2 SWS)
B.Phy.5710	Spintransport und Dynamik	(3 C/2 SWS)
B.Phy.5711	Starkkorrelierte Elektronensysteme	(4 C/2 SWS)
B.Phy.5712	Tieftemperaturphysik	(3 C/2 SWS)
B.Phy.5713	Supraleitung	(3 C/2 SWS)
B.Phy.5714	Introduction to Solid State Theory	(6 C/6 SWS)
B.Phy.5715	Quantum Simulators	(3 C/2 SWS)
B.Phy.571	Spezielle Themen der Festkörper- und Materialphysik I	(6 C/ 6 SWS)
B.Phy.572	Spezielle Themen der Festkörper- und Materialphysik II	(6 C/ 6 SWS)
B.Phy.573	Spezielle Themen der Festkörper- und Materialphysik III	(3 C/ 3 SWS)

cc. Es muss eines der folgenden Wahlpflichtmodule im Umfang von 6 C erfolgreich absolviert werden:

D 14/04/1 D14/1 0004		(0.0./ 4.0)4(0)
B.WIWI-BWL.0002	S	(6 C / 4 SWS)
B.WIWI-BWL.0004	ŭ	(6 C / 4 SWS)
B.WIWI-OPH.000		(6 C / 4 SWS)
	punkt Astro- und Geophysik (wenigstens 28 C)	40.0 ()
_	ende zwei Wahlpflichtmodule im Umfang von insgesamt .	12 C erfolgreich
absolviert we		(0.0/0.0040)
B.Phy.501	Einführung in die Astro- und Geophysik	(6 C/ 6 SWS)
B.Phy.405	Spezialisierungspraktikum in Astro- und Geophysik	(6 C/ Block)
	nigstens zwei der folgenden Wahlpflichtmodule im Umfar	ng von insgesamt
_	0 C erfolgreich absolviert werden:	(0.0(4.0)40)
B.Phy.5501	Aerodynamik	(6 C/4 SWS)
B.Phy.5502	Aktive Galaxien	(3 C/2 SWS)
B.Phy.5503	Astrophysikalische Spektroskopie	(3 C/2 SWS)
B.Phy.5504	Computational Physics	(6 C/4 SWS)
B.Phy.5505	Data Analysis in Astrophysics	(3 C/2 SWS)
B.Phy.5506	Einführung in die Strömungsmechanik	(6 C/4 SWS)
B.Phy.5507	Elektromagnetische Tiefenforschung	(3 C/2 SWS)
B.Phy.5508	Geophysikalische Strömungsmechanik	(4 C/4 SWS)
B.Phy.5509	Einführung in die theoretische Astrophysik	(3 C/2 SWS)
B.Phy.5510	Physics of the Interstellar Medium	(3 C/2 SWS)
B.Phy.5511	Magnetohydrodynamik	(3 C/2 SWS)
B.Phy.5512	Massearme Sterne, Braune Zwerge und Planeten	(3 C/2 SWS)
B.Phy.5513	Numerische Strömungsmechanik	(6 C/4 SWS)
B.Phy.5514	Physics of the Interior of the Sun and Stars	(3 C/2 SWS)
B.Phy.5515	Transportmechanismen in heterogenen Medien	(3 C/2 SWS)
B.Phy.5516	Physik der Galaxien	(3 C/2 SWS)
B.Phy.5517	Physik der Sonne, Heliosphäre und des Weltraumwetters: Grundkenntnisse	(3 C/2 SWS)
B.Phy.5518	Physik der Sonne, Heliosphäre und des Weltraumwet-	(3 C/2 SWS)
B.F11y.5516	ters: Weltraumwetter Anwendungen	(3 0/2 3443)
B.Phy.5519	Plattentektonik und Geophysikalische Exploration	(3 C/2 SWS)
B.Phy.5520	Seismology of the Sun and Stars	(3 C/2 SWS)
B.Phy.5521	Seminar zu einem Thema der Geophysik	(4 C/2 SWS)
B.Phy.5522	Solar Eclipses and Physics of the Corona	(3 C/2 SWS)
B.Phy.5523	Allgemeine Relativitätstheorie	(6 C/6 SWS)
B.Phy.5524	Seminar über Fortgeschrittene Themen der ART	(4 C/2 SWS)
B.Phy.5525	Seminar über Solitonen	(4 C/2 SWS)
B.Phy.5527	Computational Cosmology	(6 C/4 SWS)
B.Phy.5528	Black Holes in Astrophysics and Cosmology	(4 C/2 SWS)

B.Phy.5529	Galaxies and the Intergalactic Medium	(4 C/2 SWS)
B.Phy.5531	Entstehung von Sonnensystemen	(3 C/2 SWS)
B.Phy.5532	Symmetrien und Nichtlineare Differenzialgleichungen i	in (3 C/4 SWS)
	der Physik	
B.Phy.5533	Solar and Stellar Activity	(6 C/4 SWS)
B.Phy.5535	Fluid dynamics, nonlinear dynamics and turbulence	(3 C/2 SWS)
B.Phy.5538	Stellar Atmospheres	(6 C/4 SWS)
B.Phy.5539	Physics of Stellar Atmospheres	(3 C/2 SWS)
B.Phy.5540	Introduction to Cosmology	(3 C/2 SWS)
B.Phy.5001	Die Vermittlung und Untersuchung von strömungsphys	si- (6 C/4 SWS)
	kalischen Vorgängen im Experiment,	
	Teil I	
B.Phy.5002	Die Vermittlung und Untersuchung von strömungsphys	si- (6 C/4 SWS)
	kalischen Vorgängen im Experiment – Teil II	
B.Phy.5003	Sammlung und Physikalisches Museum	(3 C/2 SWS)
B.Phy.5609	Moderne Optik (Optik II)	(6 C/4 SWS)
B.Phy.5625	Röntgenphysik	(6 C/4 SWS)
B.Phy.5628	Pattern Formation	(6 C/4 SWS)
B.Phy.5801	Classical field theory	(6 C/6 SWS)
B.Phy.5804	Quantenmechanik II	(6 C/6 SWS)
B.Phy.5805	Quantenfeldtheorie I	(6 C/6 SWS)
B.Phy.5806	Spezielle Relativitätstheorie	(3 C/2 SWS)
B.Phy.551	Spezielle Themen der Astro- und Geophysik I	(6 C/6 SWS)
B.Phy.552	Spezielle Themen der Astro- und Geophysik II	(6 C/ 6 SWS)
B.Phy.553	Spezielle Themen der Astro- und Geophysik III	(3 C/ 3 SWS)
cc. Es muss eine	es der folgenden Wahlpflichtmodule im Umfang von 6 C ei	folgreich absolviert
werden:		
B.Phy.502	Einführung in die Biophysik und Physik komplexer	(6 C/ 6 SWS)
	Systeme	
B.Phy.503	Einführung in die Festkörper- und Materialphysik	(6 C/ 6 SWS)
B.Phy.504	Einführung in die Kern- und Teilchenphysik	(6 C/ 6 SWS)
c. Studienschw	erpunkt Biophysik und Physik komplexer Systeme (we	enigstens 28 C)
aa. Es müssen fo	olgende zwei Wahlpflichtmodule im Umfang von insgesam	it 12 C erfolgreich
absolviert v	werden:	
B.Phy.502	Einführung in die Biophysik und Physik komplexer Syster	,
B.Phy.406	Spezialisierungspraktikum Biophysik und Physik komplex Systeme	ter (6 C/ Block)
bb. Es müssen v	venigstens zwei der folgenden Wahlpflichtmodule im Umfa	ang von insgesamt

bb. Es müssen wenigstens zwei der folgenden Wahlpflichtmodule im Umfang von insgesamt wenigstens 10 C erfolgreich absolviert werden:

B.Phy.5601	Theoretical and Computational Neuroscience I	(3 C/2 SWS)
B.Phy.5602	Theoretical and Computational Neuroscience II	(3 C/2 SWS)
B.Phy.5603	Einführung in die Laserphysik	(3 C/2 SWS)
B.Phy.5604	Foundations of Nonequilibrium Statistical Physics	(3 C/2 SWS)
B.Phy.5605	Grundlagen Computational Neuroscience	(3 C/2 SWS)
B.Phy.5606	Mechanik der Zelle	(3 C/2 SWS)
B.Phy.5607	Mechanik und Dynamik des Zytoskeletts	(4 C/2 SWS)
B.Phy.5608	Mikro- und Nanofluidik	(3 C/2 SWS)
B.Phy.5609	Moderne Optik (Optik II)	(6 C/4 SWS)
B.Phy.5611	Optische Spektroskopie und Mikroskopie	(3 C/2 SWS)
B.Phy.5612	Physics of Extreme Events	(3 C/2 SWS)
B.Phy.5613	Physik der weichen kondensierten Materie	(6 C/4 SWS)
B.Phy.5614	Proseminar Computational Neuroscience/	(5 C/2 SWS)
	Neuroinformatik	
B.Phy.5615	Biologie und Biochemie für Physiker	(3 C/2 SWS)
B.Phy.5616	Biophysik der Zelle – Physik auf kleinen Skalen	(6 C/4 SWS)
B.Phy.5617	Seminar zur Physik der weichen kondensierten Materie	(4 C/2 SWS)
B.Phy.5618	Seminar zur Biophysik der Zelle - Physik auf kleinen	(4 C/2 SWS)
	Skalen	
B.Phy.5619	Seminar zur Mikro- und Nanofluidik	(4 C/2 SWS)
B.Phy.5620	Sportphysik	(3 C/2 SWS)
B.Phy.5621	Stochastic Processes	(3 C/2 SWS)
B.Phy.5622	Weiterführende Optik	(3 C/2 SWS)
B.Phy.5623	Theoretische Biophysik	(6 C/4 SWS)
B.Phy.5624	Introduction to Theoretical Neuroscience	(3 C/2 SWS)
B.Phy.5625	Röntgenphysik	(6 C/4 SWS)
B.Phy.5628	Pattern Formation	(6 C/4 SWS)
B.Phy.5629	Nichtlineare Dynamik und Zeitreihenanalyse	(6 C/4 SWS)
B.Phy.5630	Nichtlineare Dynamik und Biokomplexität	(4 C/2 SWS)
B.Phy.5631	Selbstorganisation in der Physik und der Biologie	(4 C/2 SWS)
B.Phy.5632	Seminar über aktuelle Fragen zur Turbulenzforschung	(4 C/2 SWS)
B.Phy.5635	Introduction to Chaotic Behavior I: Dissipative Systems	(3 C/2 SWS)
B.Phy.5636	Introduction to Chaotic Behavior II: Hamiltonian Sys-	(3 C/2 SWS)
	tems	
B.Phy.5637	Computer simulation methods in statistical physics	(3 C/2 SWS)
B.Phy.5638	Artificial Intelligence Robotics: An Introduction	(3 C/2 SWS)
B.Phy.5639	Optische Messtechnik	(3 C/2 SWS)
B.Phy.5640	Principles of self-organization in biophysics	(6 C/4 SWS)
B.Phy.5641	Theorie und Praxis der Mikroskopie	(4 C/2 SWS)

B.Phy.5642	Experimentelle Methoden in der Biophysik	(3 C/2 SWS)
B.Phy.5643	Seminar Experimentelle Methoden in der Biophysik	(3 C/2 SWS)
B.Phy.5644	Elasticity, multiphase flow and fracture	(3 C/2 SWS)
B.Phy.5645	Nanooptics and Plasmonics	(3 C/2 SWS)
B.Phy.5646	Klimaphysik	(6 C/4 SWS)
B.Phy.5647	Physik der Mischgetränke	(3 C/2 SWS)
B.Phy.5648	Theoretische und computergestützte Biophysik	(3 C/2 SWS)
B.Phy.5649	Biomolekulare Physik und Simulationen	(3 C/2 SWS)
B.Phy.5001	Die Vermittlung und Untersuchung von strömungsphy-	(6 C/4 SWS)
	sikalischen Vorgängen im Experiment – Teil I	
B.Phy.5002	Die Vermittlung und Untersuchung von strömungsphy-	(6 C/4 SWS)
	sikalischen Vorgängen im Experiment – Teil II	
B.Phy.5003	Sammlung und Physikalisches Museum	(3 C/2 SWS)
B.Phy.5501	Aerodynamik	(6 C/4 SWS)
B.Phy.5504	Computational Physics	(6 C/4 SWS)
B.Phy.5506	Einführung in die Strömungsmechanik	(6 C/4 SWS)
B.Phy.5525	Seminar über Solitonen	(4 C/2 SWS)
B.Phy.5701	Weiche Materie: Flüssigkristalle	(3 C/2 SWS)
B.Phy.5707	Nanoscience	(3 C/2 SWS)
B.Phy.5709	Seminar on Nanoscience	(4 C/2 SWS)
B.Phy.5801	Classical field theory	(6 C/6 SWS)
B.Phy.561	Spezielle Themen der Biophysik und Physik komplexer Systeme I	(6 C/ 6 SWS)
B.Phy.562	Spezielle Themen der Biophysik und Physik komplexer Systeme II	(6 C/ 6 SWS)
B.Phy.563	Spezielle Themen der Biophysik und Physik komplexer Systeme III	(3 C/ 3 SWS)
cc. Es muss ein	nes der folgenden Wahlpflichtmodule im Umfang von 6 C e	rfolgreich absolvie
werden:		

B.Phy.501	Einführung in die Astro- und Geophysik	(6 C/ 6 SWS)
B.Phy.503	Einführung in die Festkörper- und Materialphysik	(6 C/ 6 SWS)
B.Phy.504	Einführung in die Kern- und Teilchenphysik	(6 C/ 6 SWS)

d. Studienschwerpunkt Festkörper- und Materialphysik (wenigstens 28 C)

aa. Es müssen folgende zwei Wahlpflichtmodule im Umfang von insgesamt 12 C erfolgreich absolviert werden:

B.Phy.503	Einführung in die Festkörper- und Materialphysik	(6 C/ 6 SWS)
B.Phy.407	Spezialisierungspraktikum Festkörper- und Materialphysik	(6 C/ Block)

bb. Es müssen wenigstens zwei der folgenden Wahlpflichtmodule im Umfang von insgesamt wenigstens 10 C erfolgreich absolviert werden:

B.Phy.5701	Weiche Materie: Flüssigkristalle	(3 C/2 SWS)
B.Phy.5702	Dünne Schichten	(3 C/2 SWS)
B.Phy.5703	Vorlesungszyklus: Eigenschaften fester Stoffe und grundle-	(3 C/2 SWS)
	gende Phänomene	
B.Phy.5704	Magnetismus	(6 C/4 SWS)
B.Phy.5705	Magnetismus Seminar	(4 C/2 SWS)
B.Phy.5707	Nanoscience	(3 C/2 SWS)
B.Phy.5708	Physik der Nanostrukturen	(3 C/2 SWS)
B.Phy.5709	Seminar on Nanoscience	(4 C/2 SWS)
B.Phy.5710	Spintransport und Dynamik	(3 C/2 SWS)
B.Phy.5711	Starkkorrelierte Elektronensysteme	(4 C/2 SWS)
B.Phy.5712	Tieftemperaturphysik	(3 C/2 SWS)
B.Phy.5713	Supraleitung	(3 C/2 SWS)
B.Phy.5714	Introduction to Solid State Theory	(6 C/6 SWS)
B.Phy.5715	Quantum Simulators	(3 C/2 SWS)
B.Phy.5001	Die Vermittlung und Untersuchung von strömungs-	(6 C/4 SWS)
	physikalischen Vorgängen im Experiment, Teil I	
B.Phy.5002	Die Vermittlung und Untersuchung von strömungs-	(6 C/4 SWS)
	physikalischen Vorgängen im Experiment – Teil II	
B.Phy.5003	Sammlung und Physikalisches Museum	(3 C/2 SWS)
B.Phy.5504	Computational Physics	(6 C/4 SWS)
B.Phy.5605	Grundlagen Computational Neuroscience	(3 C/2 SWS)
B.Phy.5606	Mechanik der Zelle	(3 C/2 SWS)
B.Phy.5607	Mechanik und Dynamik des Zytoskeletts	(4 C/2 SWS)
B.Phy.5609	Moderne Optik (Optik II)	(6 C/4 SWS)
B.Phy.5613	Physik der weichen kondensierten Materie	(6 C/4 SWS)
B.Phy.5616	Biophysik der Zelle – Physik auf kleinen Skalen	(6 C/4 SWS)
B.Phy.5617	Seminar zur Physik der weichen kondensierten Materie	(4 C/2 SWS)
B.Phy.5618	Seminar zur Biophysik der Zelle	(4 C/2 SWS)
B.Phy.5625	Röntgenphysik	(6 C/4 SWS)
B.Phy.5628	Pattern Formation	(6 C/4 SWS)
B.Phy.5637	Computer simulation methods in statistical physics	(3 C/2 SWS)
B.Phy.5644	Elasticity, multiphase flow and fracture	(3 C/2 SWS)
B.Phy.5801	Classical field theory	(6 C/6 SWS)
B.Phy.5804	Quantenmechanik II	(6 C/6 SWS)
B.Phy.5805	Quantenfeldtheorie I	(6 C/6 SWS)
B.Phy.571	Spezielle Themen der Festkörper- und Materialphysik I	(6 C/ 6 SWS)
B.Phy.572	Spezielle Themen der Festkörper- und Materialphysik II	(6 C/ 6 SWS)
B.Phy.573	Spezielle Themen der Festkörper- und Materialphysik III	(3 C/ 3 SWS)

cc. Es muss eir	nes der folgenden Wahlpflichtmodule im Umfang von 6 C erfolg	reich absolviert
werden:		
B.Phy.501	Einführung in die Astro- und Geophysik	(6 C/ 6 SWS)
B.Phy.502	Einführung in die Biophysik und Physik komplexer Systeme	(6 C/ 6 SWS)
B.Phy.504	Einführung in die Kern- und Teilchenphysik	(6 C/ 6 SWS)
e. Studiensch	verpunkt Kern- und Teilchenphysik (wenigstens 28 C)	
aa. Es müssen	folgende zwei Wahlpflichtmodule im Umfang von insgesamt 12	C erfolgreich
absolviert	werden:	
B.Phy.504	Einführung in die Kern- und Teilchenphysik	(6 C/ 6 SWS)
B.Phy.408	Spezialisierungspraktikum Kern- und Teilchenphysik	(6 C/ Block)
bb. Es müssen	wenigstens zwei der folgenden Wahlpflichtmodule im Umfang	von insgesamt
wenigster	ns 10 C erfolgreich absolviert werden:	
B.Phy.5801	Classical field theory	(6 C/6 SWS)
B.Phy.5804	Quantenmechanik II	(6 C/6 SWS)
B.Phy.5805	Quantenfeldtheorie I	(6 C/6 SWS)
B.Phy.5806	Spezielle Relativitätstheorie	(3 C/2 SWS)
B.Phy.5807	Physik der Teilchenbeschleuniger	(3 C/3 SWS)
B.Phy.5808	Wechselwirkung zwischen Strahlung und Materie – Detek-	(3 C/3 SWS)
	torphysik	
B.Phy.5809	Hadron-Collider-Physik	(3 C/3 SWS)
B.Phy.5810	Physik des Higgs-Bosons	(3 C/3 SWS)
B.Phy.5811	Statistische Methoden der Datenanalyse	(3 C/3 SWS)
B.Phy.5812	Physik des Top-Quarks	(3 C/3 SWS)
B.Phy.5813	Teilchenphysik 2 - von und mit Quarks	(6 C/6 SWS)
B.Phy.5814	Particle Physics 3 - of and with leptons	(6 C/6 SWS)
B.Phy.5001	Die Vermittlung und Untersuchung von strömungs-	(6 C/4 SWS)
	physikalischen Vorgängen im Experiment, Teil I	
B.Phy.5002	Die Vermittlung und Untersuchung von strömungs-	(6 C/4 SWS)
	physikalischen Vorgängen im Experiment – Teil II	
B.Phy.5003	Sammlung und Physikalisches Museum	(3 C/2 SWS)
B.Phy.5504	Computational Physics	(6 C/4 SWS)
B.Phy.5523	Allgemeine Relativitätstheorie	(6 C/6 SWS)
B.Phy.5524	Seminar über Fortgeschrittene Themen der ART	(4 C/2 SWS)
B.Phy.5540	Introduction to Cosmology	(3 C/2 SWS)
B.Phy.5609	Moderne Optik (Optik II)	(6 C/4 SWS)

(6 C/4 SWS)

(6 C/4 SWS)

(6 C/ 6 SWS)

(6 C/ 6 SWS)

B.Phy.5625

B.Phy.5628

B.Phy.581

B.Phy.582

Röntgenphysik

Pattern Formation

Spezielle Themen der Kern- und Teilchenphysik I

Spezielle Themen der Kern- und Teilchenphysik II

B.Phy.583	Spezielle Themen der Kern- und Teilchenphysik III	(3 C/ 3 SWS)
D.1 11V.JUJ	Spezielle Thernen del Metti- and Tellchenbrivsik III	13 0/ 3 34431

cc. Es muss eines der folgenden Wahlpflichtmodule im Umfang von 6 C erfolgreich absolviert werden:

B.Phy.501	Einführung in die Astro- und Geophysik	(6 C/ 6 SWS)
B.Phy.502	Einführung in die Biophysik und Physik komplexer Systeme	(6 C/ 6 SWS)
B.Phy.503	Einführung in die Festkörper- und Materialphysik	(6 C/ 6 SWS)

III. Schlüsselkompetenzen

Es müssen folgende Pflichtmodule im Umfang von insgesamt 18 C erfolgreich absolviert werden:

B.Phy.602	Professionalisierungsseminar	(4 C/ 2 SWS)
B.Phy.604	Projektpraktikum	(6 C/ 6 SWS)
B.Phy.605	Computergestütztes wissenschaftliches Rechnen	(8 C/ 10 SWS)

IV. Bachelorarbeit

Durch die erfolgreiche Anfertigung der Bachelorarbeit werden 12 C erworben. Die Bachelorarbeit ist im Spezialisierungsbereich anzufertigen.

B. Konsekutiver Master-Studiengang "Physik"

Es müssen nach Maßgabe der folgenden Bestimmungen wenigstens 120 C erworben werden.

I. Pflichtmodule

Es müssen folgende Pflichtmodule im Umfang von insgesamt 16 C erfolgreich absolviert werden:

M.Phy.413	Profilierungsseminar	(4 C/ 2 SWS)
M.Phy.601	Planung und Durchführung wissenschaftlicher Arbeiten	(9 C/ Block)
M.Phy.602	Knüpfung und Pflege von Arbeitskontakten	(3 C/ Block)

II. Forschungsschwerpunkt

Der Master-Studiengang Physik muss mit einem der vier Studienschwerpunkte Astro- und Geophysik, Biophysik und Physik komplexer Systeme, Festkörper- und Materialphysik oder Kern- und Teilchenphysik im Umfang von jeweils wenigstens 50 C nach Maßgabe der folgenden Bestimmungen studiert werden.

1. Forschungsschwerpunkt Astro- und Geophysik

a. Es müssen folgende vier Wahlpflichtmodule im Umfang von insgesamt 41 C erfolgreich absolviert werden:

M.Phy.501	Forschungsschwerpunkt Astro- und Geophysik	(6 C/ 6 SWS)
M.Phy.401	Forschungspraktikum Astro- und Geophysik	(13 C/ 10 SWS)
M.Phy.409	Forschungsseminar Astro- und Geophysik	(4 C/ 2 SWS)
M.Phv.405	Forschungshauptpraktikum Astro- und Geophysik	(18 C/ Block)

b. Es müssen wenigstens zwei der folgenden Wahlpflichtmodule im Umfang von insgesamt wenigstens 9 C erfolgreich absolviert werden:

3	3	
B.Phy.5501	Aerodynamik	(6 C/4 SWS)
B.Phy.5502	Aktive Galaxien	(3 C/2 SWS)
B.Phy.5503	Astrophysikalische Spektroskopie	(3 C/2 SWS)
B.Phy.5504	Computational Physics	(6 C/4 SWS)
B.Phy.5505	Data Analysis in Astrophysics	(3 C/2 SWS)
B.Phy.5506	Einführung in die Strömungsmechanik	(6 C/4 SWS)
B.Phy.5507	Elektromagnetische Tiefenforschung	(3 C/2 SWS)
B.Phy.5508	Geophysikalische Strömungsmechanik	(4 C/4 SWS)
B.Phy.5509	Einführung in die theoretische Astrophysik	(3 C/2 SWS)
B.Phy.5510	Physics of the Interstellar Medium	(3 C/2 SWS)
B.Phy.5511	Magnetohydrodynamik	(3 C/2 SWS)
B.Phy.5512	Massearme Sterne, Braune Zwerge und Planeten	(3 C/2 SWS)
B.Phy.5514	Physics of the Interior of the Sun and Stars	(3 C/2 SWS)
B.Phy.5515	Transportmechanismen in heterogenen Medien	(3 C/2 SWS)
B.Phy.5516	Physik der Galaxien	(3 C/2 SWS)
B.Phy.5517	Physik der Sonne, Heliosphäre und des Weltraumwet-	(3 C/2 SWS)
	ters: Schlüsselwissen	
B.Phy.5518	Physik der Sonne, Heliosphäre und des Weltraumwet-	(3 C/2 SWS)
	ters: Weltraumwetter Anwendungen	
B.Phy.5519	Plattentektonik und Geophysikalische Exploration	(3 C/2 SWS)
B.Phy.5520	Seismology of the Sun and Stars	(3 C/2 SWS)
B.Phy.5521	Seminar zu einem Thema der Geophysik	(4 C/2 SWS)
B.Phy.5522	Solar Eclipses and Physics of the Corona	(3 C/2 SWS)
B.Phy.5523	Allgemeine Relativitätstheorie (General Relativity)	(6 C/6 SWS)
B.Phy.5524	Seminar über Fortgeschrittene Themen der ART	(4 C/2 SWS)
B.Phy.5525	Seminar über Solitonen	(4 C/2 SWS)
B.Phy.5527	Computational Cosmology	(6 C/4 SWS)
B.Phy.5528	Black Holes in Astrophysics and Cosmology	(4 C/2 SWS)
B.Phy.5529	Galaxies and the Intergalactic Medium	(4 C/2 SWS)
B.Phy.5531	Entstehung von Sonnensystemen	(3 C/2 SWS)
B.Phy.5532	Symmetrien und Nichtlineare Differenzialgleichungen	(3 C/4 SWS)
	in der Physik	
B.Phy.5533	Solar and Stellar Activity	(6 C/4 SWS)
B.Phy.5535	Fluid dynamics, nonlinear dynamics and turbulence	(3 C/2 SWS)
B.Phy.5538	Stellar Atmospheres	(6 C/4 SWS)
B.Phy.5539	Physics of Stellar Atmospheres	(3 C/2 SWS)
B.Phy.5540	Introduction to Cosmology	(3 C/2 SWS)

B.Phy.5001	Die Vermittlung und Untersuchung von strömungs-	(6 C/4 SWS)
	physikalischen Vorgängen im Experiment, Teil I	
B.Phy.5002	Die Vermittlung und Untersuchung von strömungs-	(6 C/4 SWS)
	physikalischen Vorgängen im Experiment – Teil II	
B.Phy.5003	Sammlung und Physikalisches Museum	(3 C/2 SWS)
B.Phy.5609	Moderne Optik (Optik II)	(6 C/4 SWS)
B.Phy.5625	Röntgenphysik	(6 C/4 SWS)
B.Phy.5628	Pattern Formation	(6 C/4 SWS)
B.Phy.5801	Classical field theory	(6 C/6 SWS)
B.Phy.5804	Quantenmechanik II	(6 C/6 SWS)
B.Phy.5805	Quantenfeldtheorie I	(6 C/6 SWS)
B.Phy.5806	Spezielle Relativitätstheorie	(3 C/2 SWS)
M.Phy.5501	Kompressible Strömungen	(3 C/2 SWS)
M.Phy.5502	Numerical experiments in stellar astrophysics	(3 C/2 SWS)
M.Phy.5503	Space Plasma Physics	(3 C/2 SWS)
M.Phy.5504	Aktuelle Themen der Extragalaktischen Forschung	(3 C/1 SWS)
M.Phy.5505	Erforschung des Sonnensystems durch Raummissio-	(3 C/2 SWS)
	nen	
M.Phy.5506	Vertiefungsvorlesung Astrophysik	(3 C/2 SWS)
M.Phy-AM.001	Active Galactic Nuclei	(6 C / 2 SWS)
M.Phy-AM.002	Stellar Structure and Evolution	(6 C / 2 SWS)
M.Phy-AM.003	Stellar Atmospheres	(6 C / 4 SWS)
M.Phy.5002	Contemporary Physics	(4 C/2 SWS)
M.Phy.551	Fortgeschrittene Themen der Astro- und Geophysik I	(6 C/ 6 SWS)
M.Phy.552	Fortgeschrittene Themen der Astro- und Geophysik II	(3 C/ 3 SWS)

2. Forschungsschwerpunkt Biophysik und Physik komplexer Systeme

a. Es müssen folgende vier Wahlpflichtmodule im Umfang von insgesamt 41 C erfolgreich absolviert werden:

M.Phy.502	Forschungsschwerpunkt Biophysik und Physik komple-	(6 C/ 6 SWS)
	xer Systeme	
M.Phy.402	Forschungspraktikum Biophysik und Physik komplexer	(13 C/ 10 SWS)
	Systeme	
M.Phy.410	Forschungsseminar Biophysik und Physik komplexer	(4 C/ 2 SWS)
	Systeme	
M.Phy.406	Forschungshauptpraktikum Biophysik und Physik kom-	(18 C/ Block)
	plexer Systeme	

b. Es müssen wenigstens zwei der folgenden Wahlpflichtmodule im Umfang von insgesamt wenigstens 9 C erfolgreich absolviert werden:

B.Phy.5601	Theoretical and Computational Neuroscience I	(3 C/2 SWS)
B.Phy.5602	Theoretical and Computational Neuroscience II	(3 C/2 SWS)
B.Phy.5603	Einführung in die Laserphysik	(3 C/2 SWS)
B.Phy.5604	Foundations of Nonequilibrium Statistical Physics	(3 C/2 SWS)
B.Phy.5605	Grundlagen Computational Neuroscience	(3 C/2 SWS)
B.Phy.5606	Mechanik der Zelle/Mechanics oft the cell	(3 C/2 SWS)
B.Phy.5607	Mechanik und Dynamik des Zytoskeletts/Mechanics and	(3 C/2 SWS)
	dynamics of the cytoskeleton	
B.Phy.5608	Mikro- und Nanofluidik	(3 C/2 SWS)
B.Phy.5609	Moderne Optik (Optik II)	(6 C/4 SWS)
B.Phy.5611	Optische Spektroskopie und Mikroskopie	(3 C/2 SWS)
B.Phy.5612	Physics of Extreme Events	(3 C/2 SWS)
B.Phy.5613	Physik der weichen kondensierten Materie/Physics of soft	(6 C/4 SWS)
	condensed matter	
B.Phy.5614	Proseminar Computational Neuroscience/Neuroinformatik	(5 C/2 SWS)
B.Phy.5615	Biologie und Biochemie für Physiker	(3 C/2 SWS)
B.Phy.5616	Biophysik der Zelle – Physik auf kleinen Skalen	(6 C/4 SWS)
B.Phy.5617	Seminar zur Physik der weichen kondensierten Materie	(4 C/2 SWS)
B.Phy.5618	Seminar zur Biophysik der Zelle	(4 C/2 SWS)
B.Phy.5619	Seminar zur Mikro- und Nanofluidik	(4 C/2 SWS)
B.Phy.5620	Sportphysik	(3 C/2 SWS)
B.Phy.5621	Stochastic Processes	(3 C/2 SWS)
B.Phy.5622	Weiterführende Optik	(3 C/2 SWS)
B.Phy.5623	Theoretische Biophysik	(6 C/4 SWS)
B.Phy.5624	Introduction to Theoretical Neuroscience	(3 C/2 SWS)
B.Phy.5625	Röntgenphysik	(6 C/4 SWS)
B.Phy.5628	Pattern Formation	(6 C/4 SWS)
B.Phy.5629	Nichtlineare Dynamik und Zeitreihenanalyse	(6 C/4 SWS)
B.Phy.5630	Nichtlineare Dynamik und Biokomplexität	(4 C/2 SWS)
B.Phy.5631	Selbstorganisation in der Physik und der Biologie	(4 C/2 SWS)
B.Phy.5632	Seminar über aktuelle Fragen zur Turbulenzforschung	(4 C/2 SWS)
B.Phy.5635	Introduction to Chaotic Behavior I: Dissipative Systems	(3 C/2 SWS)
B.Phy.5636	Introduction to Chaotic Behavior II: Hamiltonian Systems	(3 C/2 SWS)
B.Phy.5637	Computer simulation methods in statistical physics	(3 C/2 SWS)
B.Phy.5638	Artificial Intelligence Robotics: An Introduction	(3 C/2 SWS)
B.Phy.5639	Optische Messtechnik	(3 C/2 SWS)
B.Phy.5640	Principles of self-organization in biophysics	(6 C/4 SWS)
B.Phy.5641	Theorie und Praxis der Mikroskopie	(4 C/2 SWS)
B.Phy.5642	Experimentelle Methoden in der Biophysik	(3 C/2 SWS)

B.Phy.5643	Seminar Experimentelle Methoden in der Biophysik	(3 C/2 SWS)
B.Phy.5644	Elasticity, multiphase flow and fracture	(3 C/2 SWS)
B.Phy.5645	Nanooptics and Plasmonics	(3 C/2 SWS)
B.Phy.5646	Klimaphysik	(6 C/4 SWS)
B.Phy.5647	Physik der Mischgetränke	(3 C/2 SWS)
B.Phy.5648	Theoretische und computergestützte Biophysik	(3 C/2 SWS)
B.Phy.5649	Biomolekulare Physik und Simulationen	(3 C/2 SWS)
B.Phy.5001	Die Vermittlung und Untersuchung von strömungs-	(6 C/4 SWS)
	physikalischen Vorgängen im Experiment, Teil I	
B.Phy.5002	Die Vermittlung und Untersuchung von strömungs-	(6 C/4 SWS)
	physikalischen Vorgängen im Experiment – Teil II	
B.Phy.5003	Sammlung und Physikalisches Museum	(3 C/2 SWS)
B.Phy.5501	Aerodynamik	(6 C/4 SWS)
B.Phy.5506	Einführung in die Strömungsmechanik	(6 C/4 SWS)
B.Phy.5525	Seminar über Solitonen	(4 C/2 SWS)
B.Phy.5707	Nanoscience	(3 C/2 SWS)
B.Phy.5709	Seminar on Nanoscience	(4 C/2 SWS)
B.Phy.5801	Classical field theory	(6 C/6 SWS)
M.Phy.5001	Festkörperspektroskopie mit Kernspins	(3 C/3 SWS)
M.Phy.5501	Kompressible Strömungen	(3 C/2 SWS)
M.Phy.5601	Seminar Computational Neuroscience/Neuroinformatik	(5 C/2 SWS)
M.Phy.5602	Vertiefung Computational Neuroscience: Lernen und adap-	(5 C/2 SWS)
	tive Algorithmen	
M.Phy.5604	Biomedizinische Bildgebung und Medizinphysik	(6 C/4 SWS)
M.Phy.5605	Nanooptics and Plasmonics	(6 C/4 SWS)
M.Phy.5606	X-ray waveguide optics	(3 C/2 SWS)
M.Phy.5607	Physics of x-ray generation: from the electron tube to the	(3 C/2 SWS)
	free electron laser	
M.Phy.5801	Detectors for particle physics and imaging	(3 C/3 SWS)
M.Phy.5002	Contemporary Physics	(4 C/2 SWS)
M.Phy.561	Fortgeschrittene Themen der Biophysik und Physik komple-	(6 C/ 6 SWS)
	xer Systeme I	
M.Phy.562	Fortgeschrittene Themen der Biophysik und Physik komple-	(3 C/ 3 SWS)
	xer Systeme II	

3. Forschungsschwerpunkt Festkörper- und Materialphysik

a. Es müssen folgende vier Wahlpflichtmodule im Umfang von insgesamt 41 C erfolgreich absolviert werden:

M.Phy.503	Forschungsschwerpunkt Festkörper- und Materialphysik	(6 C/ 6 SWS)
M.Phy.403	Forschungspraktikum Festkörper- und Materialphysik	(13 C/ 10 SWS)

M.Phy.411	Forschungsseminar Festkörper- und Materialphysik	(4 C/ 2 SWS)							
M.Phy.407	Forschungshauptpraktikum Festkörper- und Materialphysik	(18 C/ Block)							
b. Es müssen	b. Es müssen wenigstens zwei der folgenden Wahlpflichtmodule im Umfang von insgesamt								
wenigste	ens 9 C erfolgreich absolviert werden:								
B.Phy.5701	Weiche Materie: Flüssigkristalle	(3 C/2 SWS)							
B.Phy.5702	Dünne Schichten	(3 C/2 SWS)							
B.Phy.5703	Vorlesungszyklus: Eigenschaften fester Stoffe und grund-	(3 C/2 SWS)							
	legende Phänomene								
B.Phy.5704	Magnetismus	(6 C/4 SWS)							
B.Phy.5705	Magnetismus Seminar	(4 C/2 SWS)							
B.Phy.5707	Nanoscience	(3 C/2 SWS)							
B.Phy.5708	Physik der Nanostrukturen	(3 C/2 SWS)							
B.Phy.5709	Seminar on Nanoscience	(4 C/2 SWS)							
B.Phy.5710	Spintransport und Dynamik	(3 C/2 SWS)							
B.Phy.5711	Starkkorrelierte Elektronensysteme	(4 C/2 SWS)							
B.Phy.5712	Tieftemperaturphysik	(3 C/2 SWS)							
B.Phy.5713	Supraleitung	(3 C/2 SWS)							
B.Phy.5715	Quantum Simulators	(3 C/2 SWS)							
B.Phy.5001	Die Vermittlung und Untersuchung von strömungs-	(6 C/4 SWS)							
	physikalischen Vorgängen im Experiment, Teil I								
B.Phy.5002	Die Vermittlung und Untersuchung von strömungs-	(6 C/4 SWS)							
	physikalischen Vorgängen im Experiment – Teil II								
B.Phy.5003	Sammlung und Physikalisches Museum	(3 C/2 SWS)							
B.Phy.5504	Computational Physics	(6 C/4 SWS)							
B.Phy.5605	Grundlagen Computational Neuroscience	(3 C/2 SWS)							
B.Phy.5606	Mechanik der Zelle	(3 C/2 SWS)							
B.Phy.5607	Mechanik und Dynamik des Zytoskeletts	(4 C/2 SWS)							
B.Phy.5608	Mikro- und Nanofluidik	(3 C/2 SWS)							
B.Phy.5609	Moderne Optik (Optik II)	(6 C/4 SWS)							
B.Phy.5613	Physik der weichen kondensierten Materie	(6 C/4 SWS)							
B.Phy.5616	Biophysik der Zelle – Physik auf kleinen Skalen	(6 C/4 SWS)							
B.Phy.5617	Seminar zur Physik der weichen kondensierten Materie	(4 C/2 SWS)							
B.Phy.5618	Seminar zur Biophysik der Zelle	(4 C/2 SWS)							
B.Phy.5619	Seminar zur Mikro- und Nanofluidik	(4 C/2 SWS)							
B.Phy.5625	Röntgenphysik	(6 C/4 SWS)							
B.Phy.5628	Pattern Formation	(6 C/4 SWS)							
B.Phy.5637	Computer simulation methods in statistical physics	(3 C/2 SWS)							
B.Phy.5644	Elasticity, multiphase flow and fracture	(3 C/2 SWS)							
B.Phy.5801	Classical field theory	(6 C/6 SWS)							

B.Phy.5804	Quantenmechanik II	(6 C/6 SWS)
B.Phy.5805	Quantenfeldtheorie I	(6 C/6 SWS)
M.Phy.5001	Festkörperspektroskopie mit Kernspins	(3 C/3 SWS)
M.Phy.5605	Nanooptics and Plasmonics	(6 C/4 SWS)
M.Phy.5701	Advanced Solid State Theory	(6 C/6 SWS)
M.Phy.5702	Kinetik und Phasenumwandlung in Materialien	(3 C/2 SWS)
M.Phy.5703	Materialforschung mit Elektronen	(6 C/4 SWS)
M.Phy.5704	Materialphysik auf der Nanoskala	(3 C/2 SWS)
M.Phy.5803	Symmetries in Quantum Field Theory	(3 C/2 SWS)
M.Phy.5002	Contemporary Physics	(4 C/2 SWS)
M.Phy.571	Fortgeschrittene Themen der Festkörper- und Material-	(6 C/ 6 SWS)
	physik I	
M.Phy.572	Fortgeschrittene Themen der Festkörper- und Material-	(3 C/ 3 SWS)
	physik II	

4. Forschungsschwerpunkt Kern- und Teilchenphysik

a. Es müssen folgende vier Wahlpflichtmodule im Umfang von insgesamt 41 C erfolgreich absolviert werden:

M.Phy.504	Forschungsschwerpunkt Kern- und Teilchenphysik	(6 C/ 6 SWS)
M.Phy.404	Forschungspraktikum Kern- und Teilchenphysik	(13 C/ 10 SWS)
M.Phy.412	Forschungsseminar Kern- und Teilchenphysik	(4 C/ 2 SWS)
M.Phy.408	Forschungshauptpraktikum Kern- und Teilchenphysik	(18 C/ Block)

b. Es müssen wenigstens zwei der folgenden Wahlpflichtmodule im Umfang von insgesamt wenigstens 9 C erfolgreich absolviert werden:

B.Phy.5504	Computational Physics	(6 C/4 SWS)
B.Phy.5523	Allgemeine Relativitätstheorie	(6 C/6 SWS)
B.Phy.5524	Seminar über Fortgeschrittene Themen der ART	(4 C/2 SWS)
B.Phy.5540	Introduction to Cosmology	(3 C/2 SWS)
B.Phy.5625	Röntgenphysik	(6 C/4 SWS)
B.Phy.5628	Pattern Formation	(6 C/4 SWS)
B.Phy.5801	Classical field theory	(6 C/6 SWS)
B.Phy.5804	Quantenmechanik II	(6 C/6 SWS)
B.Phy.5805	Quantenfeldtheorie I	(6 C/6 SWS)
B.Phy.5806	Spezielle Relativitätstheorie	(3 C/2 SWS)
B.Phy.5807	Physik der Teilchenbeschleuniger	(3 C/3 SWS)
B.Phy.5808	Wechselwirkung zwischen Strahlung und Materie – Detek-	(3 C/3 SWS)
	torphysik	
B.Phy.5809	Hadron-Collider-Physik	(3 C/3 SWS)
B.Phy.5810	Physik des Higgs-Bosons	(3 C/3 SWS)
B.Phy.5811	Statistische Methoden der Datenanalyse	(3 C/3 SWS)

Physik des Top-Quarks	(3 C/3 SWS)
Teilchenphysik 2 - von und mit Quarks	(6 C/6 SWS)
Particle Physics 3 - of and with leptons	(6 C/6 SWS)
Die Vermittlung und Untersuchung von strömungs-	(6 C/4 SWS)
physikalischen Vorgängen im Experiment, Teil I	
Die Vermittlung und Untersuchung von strömungs-	(6 C/4 SWS)
physikalischen Vorgängen im Experiment – Teil II	
Sammlung und Physikalisches Museum	(3 C/2 SWS)
Moderne Optik (Optik II)	(6 C/4 SWS)
Festkörperspektroskopie mit Kernspins	(3 C/3 SWS)
Detectors for particle physics and imaging	(3 C/3 SWS)
Einführung in die Quantenchromodynamik	(3 C/2 SWS)
Symmetries in Quantum Field Theory	(3 C/2 SWS)
Simulation methods for theoretical particle physics	(3 C/3 SWS)
Quantum Field Theory II	(3 C/3 SWS)
Contemporary Physics	(4 C/2 SWS)
Fortgeschrittene Themen der Kern- und Teilchenphysik I	(6 C/ 6 SWS)
Fortgeschrittene Themen der Kern- und Teilchenphysik II	(3 C/ 3 SWS)
	Teilchenphysik 2 - von und mit Quarks Particle Physics 3 - of and with leptons Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen im Experiment, Teil I Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen im Experiment – Teil II Sammlung und Physikalisches Museum Moderne Optik (Optik II) Festkörperspektroskopie mit Kernspins Detectors for particle physics and imaging Einführung in die Quantenchromodynamik Symmetries in Quantum Field Theory Simulation methods for theoretical particle physics Quantum Field Theory II Contemporary Physics Fortgeschrittene Themen der Kern- und Teilchenphysik I

III. Profilierungsbereich

Es müssen Module im Umfang von insgesamt wenigstens 24 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden

- 1. Es müssen aus dem Lehrangebot der mathematisch-naturwissenschaftlichen Fakultäten Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden. Wählbar ist insbesondere das nachfolgende Modul; darüber hinaus wird ein Verzeichnis wählbarer Module durch die Fakultät für Physik in geeigneter Weise bekannt gemacht.
- M.Phy.603 Verfassen wissenschaftlicher Fachartikel (6 C/2 SWS)
- 2. Es müssen Module im Umfang von insgesamt wenigstens 12 C aus dem Lehrangebot der Universität außerhalb der Fakultät für Physik erfolgreich absolviert werden. Wählbar sind Angebote aufgrund der Prüfungsordnung für Studienangebote der Zentralen Einrichtung für Sprachen und Schlüsselqualifikationen (ZESS); darüber hinaus wird ein Verzeichnis wählbarer Module durch die Fakultät für Physik in geeigneter Weise bekannt gemacht.
- 3. Anstelle der Module nach Nrn. 1 und 2 können auf Antrag, der an die Studiendekanin oder den Studiendekan der Fakultät für Physik zu richten ist, andere Module (Alternativmodule) nach Maßgabe der nachfolgenden Bestimmungen absolviert werden. Dem Antrag ist die Zustimmung der Studiendekanin oder des Studiendekans der Fakultät oder Lehreinheit, die das Alternativmodul anbietet, beizufügen. Die Entscheidung trifft die Studiendekanin oder der Studiendekan der Fakultät für Physik. Der Antrag kann ohne Angabe von Grün-

den abgelehnt werden; ein Rechtsanspruch der Antragstellerin oder des Antragstellers auf Zulassung eines Alternativmoduls besteht nicht.

IV. Masterarbeit

Durch die erfolgreiche Anfertigung der Masterarbeit werden 30 C erworben.

C. Joint-Degree-Programm in Astrophysik (AstroMundus)

Es müssen abweichend von Buchstabe B. 120 C nach Maßgabe der nachfolgenden Bestimmungen erworben werden.

1. Erster Studienabschnitt

Es müssen Module des ersten Studienabschnitts im Umfang von insgesamt 60 C an der Leopold-Franzens-Universität Innsbruck sowie der Università degli Studi di Padova oder der Università degli Studi di Roma "Tor Vergata" nach Maßgabe der dort geltenden prüfungsrechtlichen Bestimmungen erfolgreich absolviert werden.

2. Zweiter Studienabschnitt

a. Pflichtmodule

Es müssen nachfolgende Module im Umfang von insgesamt 30 C erfolgreich absolviert werden:

M.Phy-AM.001 "Active Galactic Nuclei" (6 C / 2 SWS)

M.Phy-AM.002 "Stellar Structure and Evolution" (6 C / 2 SWS)

M.Phy-AM.003 ",Stellar Atmospheres" (6 C / 4 SWS)

M.Phy-AM.012 "Astrophysical Properties: From planets to cosmology" (12 C/8 SWS)

b. Masterarbeit

Durch die erfolgreiche Anfertigung der Masterarbeit werden 25 C erworben.

c. Kolloquium zur Masterarbeit

Durch das erfolgreiche Absolvieren des Kolloquiums zur Master-Arbeit werden 5 C erworben.

Anlage II Exemplarische Studienverlaufspläne A. Bachelor-Studiengang "Physik" 1. Studienschwerpunkt Nanostrukturphysik

Sem.		Pflichtmodule	Physik (122 C)		Spezia	Spezialisierung und Profilierung (58 0		
Σ C*	Physik-Grundkurs (30 C)	Praktika (23 C)	Mathematik & Theoretisch Physik (33 C+24 C)	Schlüsselkompetenzen (12 C)		lisierung O C)	Profilierung (18 C)	
1. Σ 31 C	B.Phy.101 Physik I (Pflicht) 9 C		B.Mat.0011 Analysis I (Pflicht) 9 C B.Mat.0012 AGLA I (Pflicht) 9 C	B.Phy.605 Computergestütztes wissenschaftliches Rech-				
2. Σ 28 C	B.Phy.102 Physik II (Pflicht) 9 C	B.Phy.410 Grundpraktikum	B.Phy.303 Mathematik für Physiker I (Pflicht) 9 C	nen (Pflicht) 8 C				
3. Σ 32 C	B.Phy.103 Physik III (Pflicht) 6 C.	(Pflicht) 12 C	B.Phy.304 Mathe- matik für Physiker II (Pflicht) 6 C B.Phy.201 Analytische Mechanik (Pflicht) 8 C				Nicht-Phys. Bereich (Wahlpflicht)	
4. Σ 32 C	B.Phy.104 Physik IV (Pflicht) 6 C.	B.Phy.604 Projektpraktikum (Pflicht) 6 C	B.Phy.202 Quantenmechanik I (Pflicht) 8 C		Einfühı (Wahl	ny.503 rung FM Ipflicht) I C	12 C	
5. Σ31 C		B.Phy.402 Fortgeschrittenen- praktikum (Pflicht) 5 C	B.Phy.203 Statistische Physik (Pflicht) 8 C		B.Phy.403 Speziali- sierungs- praktikum NS (Wahl- pflicht)	B.WIWI- BWL.0002 /0004 oder B.WIWI- OPH.0005 (Wahl- pflicht)	MathNat. Bereich (Wahlpflicht) 6 C	
6. Σ 26 C				B.Phy.602 Professionalisierungs- seminar (Pflicht) 4 C	6 C Bachelor- arbeit NS 12 C	6 C B.Phy.57XX Spezielle Themen FM (Wahl- pflicht) 10 C		
Σ 180 C		120	O C				0 C	

2. Studienschwerpunkt Astro- und Geophysik

Sem.		Pflichtmodule	Physik (122	C)		Spezial	isierung un	d Profilierung (58 C)
Σ C*	Physik-Grundkurs (30 C)	Praktika (23 C)		Theoretische 3 C+24 C)	Schlüsselkompetenzen (12 C)	Speziali: (40		Profilierung (18 C)
1. Σ 31 C	B.Phy.101 Physik I (Pflicht) 9 C		B.Mat.0011 Analysis I (Pflicht) 9 C	B.Mat.0012 AGLA I (Pflicht) 9 C	B.Phy.605 Computergestütztes wissenschaftliches Rech-			
2. Σ 28 C	B.Phy.102 Physik II (Pflicht) 9 C	B.Phy.410	Mather Phys (Pfl	iy.303 natik für siker I licht) C	nen (Pflicht) 8 C			
3. Σ 32 C	B.Phy.103 Physik III (Pflicht) 6 C	Grundpraktikum (Pflicht) 12 C	B.Phy.304 Mathe- matik für Physiker II (Pflicht) 6 C	B.Phy.201 Analytische Mechanik (Pflicht) 8 C				
4. Σ 32 C	B.Phy.104 Physik IV (Pflicht) 6 C.	B.Phy.604 Projektpraktikum (Pflicht) 6 C	Quantenr (Pfl	ny.202 mechanik I licht) C		B.Phy.501 Einführung AG (Wahlpflicht) 6 C	B.Phy.502 Einführung BK oder B.Phy.504	MathNat. Bereich (Wahlpflicht) 6 C Nicht-Phys. Bereich (Wahlpflicht) 12 C
5. Σ 31 C		B.Phy.402 Fortgeschrittenen- praktikum (Pflicht) 5 C	Statistisc (Pfl	ly.203 he Physik icht) C		B.Phy.405Sp eziali- sierungs- praktikum AG (Wahlpflicht) 6 C	Einführung KT (Wahl- pflicht) 6 C	\-\frac{1}{2}
6. Σ 26 C					B.Phy.602 Professionalisierungs- seminar (Pflicht) 4 C	Bachelor- arbeit AG 12 C	B.Phy.55XX Spezielle Themen AG (Wahl- pflicht) 10 C	
Σ 180 C	120 C						•	0 C

3. Studienschwerpunkt Biophysik und Physik komplexer Systeme

Sem.		Pflichtmodule	Physik (122 C)			Spe	zialisierung und	d Profilierung (58 C)
Σ C*	Physik-Grundkurs (30 C)	Praktika (23 C)	Mathematik & The Physik (33 C-		Schlüsselkompetenzen (12 C)	Speziali (40		Profilierung (18 C)
1. Σ 31 C	B.Phy.101 Physik I (Pflicht) 9 C		Analysis I	.Mat.0012 AGLA I (Pflicht) 9 C	B.Phy.605 Computergestütztes wissenschaftliches Rech-			
2. Σ 28 C	B.Phy.102 Physik II (Pflicht) 9 C	B.Phy.410 Grundpraktikum	B.Phy.30 Mathematik Physiker (Pflicht) 9 C	k für r l	nen (Pflicht) 8 C			
3. Σ 32 C	B.Phy.103 Physik III (Pflicht) 6 C.	(Pflicht) 12 C	matik für A	3.Phy.201 nalytische Mechanik (Pflicht) 8 C				MathNat. Bereich
4. Σ 32 C	B.Phy.104 Physik IV (Pflicht) 6 C.	B.Phy.604 Projektpraktikum (Pflicht) 6 C	B.Phy.20 Quantenmech (Pflicht) 8 C	hanik I		B.Phy.502 Einführung BK (Wahlpflicht) 6 C	B.Phy.503 Einführung FM oder	(Wahlpflicht) 6 C Nicht-Phys. Bereich (Wahlpflicht)
5. Σ 31 C		B.Phy.402 Fortgeschrittenen- praktikum (Pflicht) 5 C	B.Phy.20 Statistische F (Pflicht) 8 C	Physik		B.Phy.406 Speziali- sierungs- praktikum BK (Wahlpflicht) 6 C	B.Phy.501 Einführung AG (Wahl- pflicht) 6 C	12 C
6.					B.Phy.602 Professionalisierungs-	Bachelor-	B.Phy.56XX Spezielle Themen BK	
Σ 26 C					seminar (Pflicht) 4 C	arbeit BK 12 C	(Wahl- pflicht) 10 C	
Σ 180 C	120 C							С

4. Studienschwerpunkt Festkörper- und Materialphysik

Sem.	Pflichtmodule Physik (122 C)						isierung un	d Profilierung (58 C)
Σ C*	Physik-Grundkurs (30 C)	Praktika (23 C)		Theoretische 3 C+24 C)	Schlüsselkompetenzen (12 C)	Speziali (40	sierung C)	Profilierung (18 C)
1. Σ 31 C	B.Phy.101 Physik I (Pflicht) 9 C		B.Mat.0011 Analysis I (Pflicht) 9 C	B.Mat.0012 AGLA I (Pflicht) 9 C	B.Phy.605 Computergestütztes			
2. Σ 28 C	B.Phy.102 Physik II (Pflicht) 9 C		Mathen Phys (Pfli	siker I	wissenschaftliches Rech- nen (Pflicht) 8 C			
3. Σ 32 C	B.Phy.103 Physik III (Pflicht) 6 C.	B.Phy.410 Grundpraktikum (Pflicht) 12 C	B.Phy.304 Mathe- matik für Physiker II (Pflicht) 6 C	B.Phy.201 Analytische Mechanik (Pflicht) 8 C				
4. Σ 32 C	B.Phy.104 Physik IV (Pflicht) 6 C.	B.Phy.604 Projektpraktikum (Pflicht) 6 C	Quantenn	y.202 nechanik I icht) C		B.Phy.503 Einführung FM (Wahlpflicht) 6 C		MathNat. Bereich (Wahlpflicht) 6 C Nicht-Phys. Bereich (Wahlpflicht) 12 C
5. Σ31 C		B.Phy.402 Fortgeschrittenen- praktikum (Pflicht) 5 C	Statistisc	y.203 he Physik icht) C		B.Phy.407 Spezialisierungs- praktikum FM (Wahl-pflicht) 6 C B.Phy.502 Einführung BK oder B.Phy.504 Einführung KT (Wahl-pflicht) 6 C		
6. Σ 26 C					B.Phy.602 Professionalisierungs- seminar (Pflicht) 4 C	Bachelor- arbeit FM 12 C	B.Phy.57XX Spezielle Themen FM (Wahl- pflicht) 10 C	
Σ 180 C		120	0 C) C

5. Studienschwerpunkt Kern- und Teilchenphysik

Sem.		Pflichtmodule	Spezialisierung und Profilierung (58 C)			
Σ C*	Physik-Grundkurs (30 C)	Praktika (23 C)	Mathematik & Theoretische Physik (33 C+24 C)	Schlüsselkompetenzen (12 C)	Spezialisierung (40 C)	Profilierung (18 C)
1. Σ 31 C	B.Phy.101 Physik I (Pflicht) 9 C		B.Mat.0011 Analysis I (Pflicht) 9 C B.Mat.0012 AGLA I (Pflicht) 9 C	B.Phy.605 Computergestütztes wissenschaftliches Rech-		
2. Σ 28 C	B.Phy.102 Physik II (Pflicht) 9 C	B.Phy.410 Grundpraktikum	B.Phy.303 Mathematik für Physiker I (Pflicht) 9 C	nen (Pflicht) 8 C		
3. Σ 32 C	B.Phy.103 Physik III (Pflicht) 6 C.	(Pflicht) 12 C	B.Phy.304 Mathematik für Physiker II (Pflicht) 6 C B.Phy.201 Analytische Mechanik (Pflicht) 8 C			
4. Σ 32 C	B.Phy.104 Physik IV (Pflicht) 6 C.	B.Phy.604 Projektpraktikum (Pflicht) 6 C	B.Phy.202 Quantenmechanik I (Pflicht) 8 C		B.Phy.504 Einführung KT (Wahlpflicht) 6 C	MathNat. Bereich (Wahlpflicht) 6 C
5. Σ 31 C		B.Phy.402 Fortgeschrittenen- praktikum (Pflicht) 3 C	B.Phy.203 Statistische Physik (Pflicht) 8 C		B.Phy.408S peziali- sierungs- praktikum (Wahl- pflicht) 6 C B.Phy.50 Einführun B.Phy.50 Einführun (Wahl- (Wahl- 6 C pflicht) 6 C	ng (Wahlpflicht) 12 C
6. Σ 26 C				B.Phy.602 Professionalisierungs- seminar (Pflicht) 4 C	Bachelor- arbeit KT (Wahl- 12 C (Wahl- pflicht)	e KT
Σ 180 C		12		10 C	60 C	

B. Konsekutiver Master-Studiengang "Physik"

1. Forschungsschwerpunkt Astro- und Geophysik

Sem.	Forschungsschwerpunkt (50 C + 30 C)			Schlüsselkompetenz & Profilierung (40 C)			
Σ C*	Einführung & Seminar (10 C)	Praktika (31 C)	Fortgeschrittene Themen (9 C)	Schlüsselk (12	competenz ! C)	Profilierung (28 C)	
1. Σ 32 C	M.Phy.501 Forschungsschwerpunkt AG (Wahlpflicht) 6 C		M.Phy.55X Fortgeschrittene The-			M.Phy.413 Profilierungsseminar (Pflicht) 4 C MathNat. Bereich	
2. Σ 28 C	M.Phy.409 Forschungsseminar AG (Wahlpflicht) 4 C	M.Phy.401 Forschungspraktikum AG (Wahlpflicht) 13 C	men AG (Wahlpflicht) 9 C			(Wahlpflicht) 12 C Nichtphys. Bereich (Wahlpflicht) 12 C	
5. Σ 30 C		M.Phy.405 Forschungs- hauptpraktikum AG (Wahlpflicht) 18 C		M.Phy.601 Planung und Durchführung wissenschaftlicher Arbeiten (Pflicht) 9 C	M.Phy.602 Knüpfung und Pflege von Ar- beitskontakten (Pflicht) 3 C		
6. Σ 30 C		Masterarbeit AG 30 C					
Σ 120 C							

2. Forschungsschwerpunkt Biophysik und Physik komplexer Systeme

Sem.	Forschungsschwerpunkt (50 C + 30 C) Schlüsselkompetenz				2 & Profilierung (40 C)	
Σ C*	Einführung & Seminar (10 C)	Praktika (31 C)	Fortgeschrittene Themen (9 C)	Schlüsselk (12	competenz C)	Profilierung (28 C)
1. Σ 32 C	M.Phy.502 Forschungsschwerpunkt BK (Wahlpflicht) 6 C		M.Phy.56X Fortgeschrittene The-			M.Phy.413 Profilierungsseminar (Pflicht) 4 C MathNat. Bereich
2. Σ 28 C	M.Phy.410 Forschungsseminar BK (Wahlpflicht) 4 C	M.Phy.402 Forschungspraktikum BK (Wahlpflicht) 13 C	men BK (Wahlpflicht) 9 C			MathNat. Bereich (Wahlpflicht) 12 C Nichtphys. Bereich (Wahlpflicht) 12 C
5. Σ 30 C		M.Phy.406 Forschungs- hauptpraktikum BK (Wahlpflicht) 18 C		M.Phy.601 Planung und Durchführung wissenschaftlicher Arbeiten (Pflicht) 9 C	M.Phy.602 Knüpfung und Pflege von Ar- beitskontakten (Pflicht) 3 C	
6. Σ 30 C		Masterarbeit BK 30 C				
Σ 120 C						,

3. Forschungsschwerpunkt Festkörper- und Materialphysik

Sem.	Forschu	+ 30 C)	Schlüsselkompetenz & Profilierung (40 C)			
Σ C*	Einführung & Seminar (10 C)	Praktika (31 C)	Fortgeschrittene Themen (9 C)	Schlüsselkompetenz (12 C)		Profilierung (28 C)
1. Σ 32 C	M.Phy.503 Forschungsschwerpunkt FM (Wahlpflicht) 6 C		M.Phy.57X Fortgeschrittene The-			M.Phy.413 Profilierungsseminar (Pflicht) 4 C MathNat. Bereich (Wahlpflicht) 12 C Nichtphys. Bereich (Wahlpflicht) 12 C
2. Σ 28 C	M.Phy.411 Forschungsseminar FM (Wahlpflicht) 4 C	M.Phy.403 Forschungspraktikum FM (Wahlpflicht) 13 C	men FM (Wahlpflicht) 9 C			
5. Σ 30 C		M.Phy.407 Forschungs- hauptpraktikum FM (Wahlpflicht) 18 C		M.Phy.601 Planung und Durchführung wissenschaftlicher Arbeiten (Pflicht) 9 C	M.Phy.602 Knüpfung und Pflege von Ar- beitskontakten (Pflicht) 3 C	
6. Σ 30 C	Masterarbeit FM 30 C					
Σ 120 C						

4. Forschungsschwerpunkt Kern- und Teilchenphysik

Sem.	Forschu	+ 30 C)	Schlüsselkompetenz & Profilierung (40 C)			
Σ C*	Einführung & Seminar (10 C)	Praktika (31 C)	Fortgeschrittene Themen (9 C)	Schlüsselkompetenz (12 C)		Profilierung (28 C)
1. Σ 32 C	M.Phy.504 Forschungsschwerpunkt KT (Wahlpflicht) 6 C		M.Phy.58X Fortgeschrittene The-			M.Phy.413 Profilierungsseminar (Pflicht) 4 C MathNat. Bereich
2. Σ 28 C	M.Phy.412 Forschungsseminar KT (Wahlpflicht) 4 C	M.Phy.404 Forschungspraktikum KT (Wahlpflicht) 13 C	men KT (Wahlpflicht) 9 C			(Wahlpflicht) 12 C Nichtphys. Bereich (Wahlpflicht) 12 C
5. Σ 30 C		M.Phy.408 Forschungs- hauptpraktikum KT (Wahlpflicht) 18 C		M.Phy.601 Planung und Durchführung wissenschaftlicher Arbeiten (Pflicht) 9 C	M.Phy.602 Knüpfung und Pflege von Ar- beitskontakten (Pflicht) 3 C	
6. Σ 30 C	Masterarbeit FM 30 C					
Σ 120 C"						