Submitted Papers & Preprints
- Hagemann, N., Kneib, T. and Möllenhoff, K. (2025)
Capturing heterogeneous time-variation in covariate effects in non-proportional hazard regression models - Hagemann, N., Guhl, D., Kneib, T., Möllenhoff, K. and Steiner, W. J. (2024)
Dynamic Heterogeneity in Discrete Choice Experiments - Skevas, I. and Kneib, T. (2024)
A copula-based semiparametric by-production stochastic frontier model - Schlee, M., Kant, G., Säfken, B. and Kneib, T. (2024)
Decoding synthetic news: An interpretable multimodal framework for the classification of news articles in a novel news corpus - Bruns, S.B., Herwartz, H., Islam, C.G., Kneib, T. and Malina, R. (2024)
Ambiguous empirical results are not oversold but more focused on statistical significance - Brachem, J., Wiemann, P. F. V. and Kneib, T. (2024)
Bayesian Penalized Transformation Models: Structured Additive Location-Scale Regression for Arbitrary Conditional Distributions - Thielmann, A., Kneib, T. and Säfken, B. (2023)
Enhancing Adaptive Spline Regression: An Evolutionary Approach to Optimal Knot Placement and Smoothing Parameter Selection - Barna, D. M. Engeland, K., Kneib, T., Thorarinsdottir T. L. and Xu, C.-Y. (2023)
Regional index flood estimation at multiple durations with generalized additive models - Dupont, E., Marques, I. and Kneib, T. (2023)
Demystifying Spatial Confounding - Kruse, R.-M., Säfken, B. and Kneib, T. (2023)
Measuring Neural Complexity: A Covariance Penalty Approach - Thielmann, A., Kruse, R.-M., Kneib, T. and Säfken, B. (2023)
Neural Additive Models for Location Scale and Shape: A Framework for Interpretable Neural Regression Beyond the Mean - Nadifar, M., Baghishani, H., Kneib, T. and Fallah, A. (2022)
Flexible Bayesian modeling of counts: constructing penalized complexity priors - Riebl, H., Wiemann, P. F. V. and Kneib, T. (2022):
Liesel: A Probabilistic Programming Framework for Developing Semi-Parametric Regression Models and Custom Bayesian Inference Algorithms