Publikationsliste Prof. Klumpp

Preprints

[P6]   M. Yan, E. Frey, M.Müller, S. Klumpp, Stochastic bubble dynamics in phase-separated scalar active matter, arXiv.2501.11442 (2025).
[P5]   A. Taskina*, D. Magan*, S. Dannenberg*, S. Klumpp, Enhanced condensate fluidity in modified patchy particle models, arXiv.2501.08836 (2025).
[P4]   S. Dannenberg, S. Reshetniak, S. Mohammadinejad, S. O. Rizzoli, S. Klumpp, Geometry effects on protein mobility in a synapse, bioRxiv 2025.01.12.632582 (2025).
[P3]   S. Lambert, M. Duchêne, S. Klumpp, Bayesian inference of wall torques for active Brownian particles, arXiv.2409.03533 (2024).
[P2]   V. Telezki, S. Klumpp, Patterns of active dipolar particles in external magnetic fields, arXiv:2404.17641 (2024).
[P1]   A. Codutti, M. A. Charsooghi, K. Marx, E. Cerdá-Doñate, O. Munoz, P. Zaslansky, V. Telezki, T. Robinson, D. Faivre, S. Klumpp, Escape problem of magnetotactic bacteria - physiological magnetic field strength help magnetotactic bacteria navigate in simulated sediments, bioRxiv 2023.12.08.570788 (2023).

2021-

[132]   S. Reshetniak et al., The synaptic vesicle cluster as a controller of pre- and postsynaptic structure and function, J. Physiol. xx, xx (2024).
[131]   L. Abbaspour, R. Mandal, P. Sollich, S. Klumpp, Long-range velocity correlations from active dopants, Commun. Phys. 7, 289 (2024).
[130]   M. Kurjahn, A. Deka, A. Girot, L. Abbaspour, S. Klumpp, M. Lorenz, O. Bäumchen, S. Karpitschka, Quantifying gliding forces of filamentous cyanobacteria by self-buckling, eLife 12, RP87450 (2024).
[129]   S. Dannenberg, J. Penning, A. Simm, S. Klumpp, The motility-matrix production switch in Bacillus subtilis - a modeling perspective, J. Bacteriol. 206, e00047-23 (2024).
[128]   C. Lorenz, J. Forsting, R.W. Style, S. Klumpp, S. Köster, Keratin filament mechanics and energy dissipation are determined by metal-like plasticity, Matter 6, 2019-2033 (2023).
[127]   L. Abbaspour, A. Malek, S. Karpitschka, S. Klumpp, Effects of direction reversals on patterns of active filaments, Phys. Rev. Res. 5, 013171 (2023).
[126]   S. Klumpp, Transcription-translation coupling: traveling a road under construction, Biophys. J. 122, 1-3 (2023).
[125]   O. Munoz, S. Klumpp, Tug-of-war and coordination in bidirectional transport by molecular motors, J. Phys. Chem. B 126, 7957-7965 (2022).
[124]   A. Codutti, M. A. Charsooghi, E. Cerdá-Doñate, H. M. Taïeb, T. Robinson, D. Faivre, S. Klumpp, Interplay of surface interaction and magnetic torque in single-cell motion of magnetotactic bacteria in microfluidic confinement, eLife 11, e71527 (2022).
[123] V. Lepro, R. Großmann, O. Nagel, S. Sharifi Panah, S. Klumpp, R. Lipowsky, C. Beta, Optimal cargo size for active diffusion of biohybrid microcarriers, Phys. Rev. Applied 18, 034014 (2022).
[122]   G. Knotz, U. Parlitz, and S. Klumpp, Synchronization of a genetic oscillator with the cell division cycle, New J. Phys. 24, 033050 (2022).
[121]   M. Sahoo, Arsha N., P. R. Baral, and S. Klumpp, Accuracy and speed of elongation in a minimal model of DNA replication, Phys. Rev. E 104, 034417 (2021).
[120]   P. Patra and S. Klumpp, Role of bacterial persistence in spatial population expansion, Phys. Rev. E 104, 034401 (2021).
[119]   M. Benda, S. Woelfel, K. Gunka, S. Klumpp, A. Poehlein, D. Kálalová, H. Šanderová, R. Daniel, L. Krásný, J. Stülke, Quasi-essentiality of RNase Y in Bacillus subtilis is caused by its critical role in the control of mRNA homeostasis, Nucl. Acids Res. 49, 7088-7102 (2021).
[118]   A. V. Schepers, C. Lorenz, P. Nietmann, A. Janshoff, S. Klumpp, and S. Köster, Multiscale mechanics and temporal evolution of vimentin intermediate filament networks, Proc. Natl. Acad. Sci. USA 118, e2102026118 (2021).
[117]   S. Klumpp, S. Köster, A. C. Pawsey, Y. Lips, M. Wenderoth, and P. Klein, Reflections on COVID-19 induced online teaching in biophysics courses, The Biophysicist 2(2), 20-22 (2021).
[116]   L. Schaedel, C. Lorenz, A. V. Schepers, S. Klumpp, and S. Köster, Vimentin Intermediate Filaments Stabilize Dynamic Microtubules by Direct Interactions, Nature Commun. 12, 3799 (2021).
[115]   L. Abbaspour and S. Klumpp, Enhanced diffusion of a tracer particle in a lattice model of a crowded active system, Phys. Rev. E 103, 052601 (2021).
[114] F. Bachmann, J. Giltinan, A. Codutti, S. Klumpp, M. Sitti, and D. Faivre, Opportunities and utilization of branching and step-out behavior in magnetic microswimmers with a nonlinear response, Appl. Phys. Lett. 118, 174102 (2021).
[113]   S. Smyk, V. Telezki, J. Riepl, J. Hayes, and S. Klumpp, Orientation fluctuations in magnetotactic swimming, Eur. Phys. J. Special Topics 230, 1099-1103 (2021).
[112]   S. Mohammadinejad, D. Faivre, and S. Klumpp, Stokesian dynamics simulations of a magnetotactic bacterium, Eur. Phys. J. E 44, 40 (2021).

2016-2020

[111]   D. Seiferth, P. Sollich, and S. Klumpp, Coarse graining of biochemical systems described by discrete stochastic dynamics, Phys. Rev. E 102, 062149 (2020).
[110]   V. Telezki and S. Klumpp, Simulations of structure formation by confined dipolar active particles, Soft Matter 16, 10537-10547 (2020).
[109] S. Klumpp, Speed limit for cell growth, Physics 13, 108 (2020).
[108] F. Bachmann, J. Giltinan, A. Codutti, S. Klumpp, M. Sitti, and D. Faivre, Selection for function: From chemically synthesized prototypes to 3D printed micro devices, Adv. Intell. Systems 2, 2000078 (2020).
[107] K. Bente, S. Mohammadinejad, M. A. Charsooghi, F. Bachmann, A. Codutti, C. T. Lefèvre, S. Klumpp, and D. Faivre, High-speed motility originates from cooperatively pushing and pulling flagella bundles in bilophotrichous bacteria, eLife 9, e47551 (2020).
[106] D. Gomez, K. Huber, and S. Klumpp, On protein folding in crowded conditions, J. Phys. Chem. Lett. 10, 7650-7656 (2019).
[105] A. Codutti, K. Bente, D. Faivre, and S. Klumpp, Chemotaxis in external fields: simulations for active magnetic biological matter, PLoS Comp. Biol. 15, e1007548 (2019).
[104] A. Pohl, F. Berger, R. M. Sullan, C. Valverde-Tercedor, K. Freindl, N. Spiridis, C. Lefevre, N. Menguy, S. Klumpp, K. Blank, and D. Faivre, Decoding biomineralization: interaction of a Mad10 derived-peptide with magnetite thin films, Nano Lett. 19, 8207-8215 (2019).
[103] C. Lorenz, J. Forsting, A. V. Schepers, J. Kraxner, S. Bauch, H. Witt, S. Klumpp, and S. Köster, Lateral subunit coupling determines intermediate filament mechanics, Phys. Rev. Lett. 123, 188102 (2019).
[102] T. Sumi and S. Klumpp, Is F1-ATPase a rotary motor with nearly 100% efficiency? Quantitative analysis of chemomechanical coupling and mechanical slip, Nano Lett. 19, 3370-3378 (2019).
[101] S. Klumpp, A. Siryaporn, S. van Teeffelen, Focus on bacterial mechanics (editorial), New J. Phys. 21, 040201 (2019).
[100] F. Berger, S. Klumpp, R. Lipowsky, Force-dependent unbinding rate of molecular motors from stationary optical trap data, Nano Lett. 19, 2598-2602 (2019).
[99] S. Klumpp, W. Bode, P. Puri, Life in crowded conditions - Molecular crowding and beyond, Eur. Phys. J. Special Topics 27, 2315-2328 (2019).
[98] S. Klumpp, C. T. Lefèvre, M. Bennet, D. Faivre, Swimming with magnets: from biological organisms to synthetic devices, Phys. Rep. 789, 1-54 (2019).
[97] A. Codutti, F. Bachmann, D. Faivre, S. Klumpp, Bead-based hydrodynamic simulations of rigid magnetic micropropellers, Front. Robot. AI 5, 109 (2018).
[96] J.J. Dong and S. Klumpp, Simulation of colony pattern formation under differential adhesion and cell proliferation, Soft Matter 14, 1908-1916 (2018).
[95] M. Dormeyer, S. Lentes, P. Ballin, M. Wilkens, S. Klumpp, D. Kohlheyer, L. Stannek, A. Grünberger, and F. Commichau, Visualization of tandem repeat mutagenesis in Bacillus subtilis, DNA Repair 63, 10-15 (2018).
[94] A. Roy and S. Klumpp, Simulating genetic circuits in bacterial populations with growth heterogeneity, Biophys. J. 114, 484-492 (2018).
[93] B. Kiani, D. Faivre, and S. Klumpp, Self-organization and stability of magnetosome chains - A simulation study, PLoS One 13, e0190265 (2018).
[92] K. Bisht, S. Klumpp, V. Banerjee, and R. Marathe, Twitching motility of bacteria with type-IV pili: Fractal walks, first passage time, and their consequences on microcolonies, Phys. Rev. E 96, 052411 (2017).
[91] H.-H. Boltz and S. Klumpp, Buckling of elastic filaments by discrete magnetic moments, Eur. Phys. J. E 40, 86 (2017).
[90] S. Ghaisari, M. Winklhofer, P. Strauch, S. Klumpp, and D. Faivre, Unraveling magnetosome organization in magnetotactic bacteria with ferromagnetic resonance spectroscopy, Biophys. J. 113, 637-644 (2017).
[89] D. R. Reuß, J. Altenbuchner, U. Mäder, H. Rath, T. Ischebeck, P. K. Sappa, A. Thürmer, C. Guérin, P. Nicolas, L. Steil, B. Zhu, I. Feussner, S. Klumpp, R. Daniel, F. M. Commichau, U. Völker, and J. Stülke, Large-scale reduction of the Bacillus subtilis genome: Consequences for the transcriptional network, resource allocation, and metabolism, Genome Res. 27, 289-299 (2017).
[88] C.C. Gong and S. Klumpp, Modeling sRNA-regulated plasmid maintenance, PLoS One 12, e0169703 (2017).
[87] S. Klumpp and D. Faivre, Magnetotactic bacteria - magnetic navigation on the microscale, Eur. Phys. J. Special Topics 225, 2173-2188 (2016).
[86] D. Krepel, D. Gomez, S. Klumpp, and Y. Levy, Mechanism of facilitated diffusion during DNA search in crowded environments , J. Phys. Chem. B 120, 11113-11122 (2016).
[85] M. Toro-Nahuelpan, F. D. Müller, S. Klumpp, J. Plitzko, M. Bramkamp, and D. Schüler, Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament, BMC Biol. 14, 88 (2016).
[84] M. Sahoo and S. Klumpp, Asymmetric exclusion process with a dynamic roadblock and open boundaries, J. Phys. A: Math. Theor. 49, 315001 (2016).
[83] D. Gomez and S. Klumpp, Facilitated diffusion in the presence of obstacles on the DNA, Phys. Chem. Chem. Phys. 18, 11184-11192 (2016).
[82] P. Vach, S. Klumpp, and D. Faivre, Steering magnetic micropropellers along independent trajectories, J. Phys. D: Appl. Phys. 49, 065003 (2016).

2010-2015

[81]    P. Vach, P. Fratzl, S. Klumpp, and D. Faivre, Fast magnetic micropropellers with random shapes, Nano Lett. 15, 7064-7070 (2015).
[80] S. Klumpp, B. Kiani, P. Vach, and D. Faivre, Navigation with magnetic nanoparticles: magnetotactic bacteria and magnetic micro-robots, Physica Scripta T165, 014044 (2015).
[79] V. Bierbaum and S. Klumpp, Impact of the cell division cycle on gene circuits, Phys. Biol. 12, 066003 (2015).
[78] S. Klumpp and D. Faivre, Magnetotactic bacteria, in: Microswimmers - From single particle motion to collective behaviour, Lecture notes of the DFG SPP 1726 summer school 2015, edited by G. Gompper, C. Bechinger, S. Herminghaus, R. E. Isele-Holder, U. B. Kaupp, H. Löwen, H. Stark, and R. G. Winkler (Forschungszentrum Jülich, Jülich, 2015), pp. B5.1-B5.13.
[77] M. Bennet, L. Bertinetti, R. K. Neely, A. Schertel, A. Körnig, C. Floors, F. D. Müller, D. Schüler, S. Klumpp, and D. Faivre, Biologically controlled synthesis and assembly of magnetite nanoparticles, Faraday Disc. 181, 71-83 (2015).
[76] D. Gomez and S. Klumpp, Biochemical reactions in crowded environments: Revisiting the effects of volume exclusion with simulations, Front. Phys. 3, 45 (2015).
[75] P. Patra and S. Klumpp, Emergence of phenotype switching through continuous and discontinuous evolutionary transitions, Phys. Biol. 12, 046004 (2015).
[74] B. Kiani, D. Faivre, and S. Klumpp, Elastic properties of magnetosome chains, New J. Phys. 17, 043007 (2015).
[73] C. T. Lefèvre, M. Bennet, S. Klumpp, and D. Faivre, Positioning the flagellum at the center of a dividing cell to combine bacterial division with magnetic polarity, mBio 6, e02286-14 (2015).
[72] F. Berger, C. Keller, S. Klumpp, and R. Lipowsky, External forces influence the elastic coupling effects during cargo transport by molecular motors, Phys. Rev. E 91, 022701 (2015).
[71] M. Sahoo, J.J. Dong, and S. Klumpp, Dynamic blockage in an exclusion process, J. Phys. A: Math. Theor. 48, 015007 (2015).
[70] S. Klumpp, C. Keller, F. Berger, and R. Lipowsky, Cooperative phenomena of multiple molecular motors, in: Multiscale Modeling in Biomechanics and Mechanobiology, edited by S. De, W. Hwang, E. Kuhl (Springer, London, 2015), pp. 27-61.
[69] M. Mauri and S. Klumpp, A model for sigma factor competition in bacterial cells, PLoS Comp. Biol. 10, e1003845 (2014).
[68] Y. Yuzenkova, P. Gamba, M. Herber, L. Attaiech, S. Shafeeq, O. Kuipers, S. Klumpp, N. Zenkin, J.-W. Veening, Control of transcription elongation by GreA determines rate of gene expression in Streptococcus pneumoniae, Nucl. Acids Res. 42, 10987-10999 (2014).
[67] M. Scott, S. Klumpp, E. M. Mateescu, and T. Hwa, Emergence of robust growth laws from optimal regulation of ribosome synthesis, Mol. Sys. Biol. 10, 747 (2014).
[66] A. Körnig, J.J. Dong, M. Bennet, M. Widdrat, J. Andert, F. Müller, D. Schüler, S. Klumpp, and D. Faivre, Probing the mechanical properties of magnetosome chains in living magnetotactic bacteria, Nano Lett. 14, 4653-4659 (2014).
[65] C. T. Lefèvre, M. Bennet, L. Landau, P. Vach, D. Pignol, D. A. Bazylinski, R. B. Frankel, S. Klumpp, and D. Faivre, Diversity of magneto-aerotactic behaviors and oxygen sensing mechanisms in cultured magnetotactic bacteria, Biophys. J. 107, 527-538 (2014).
[64] M. Bennet, A. McCarthy, D. Fix, M. R. Edwards, F. Repp, P. Vach, J. W. C. Dunlop, M. Sitti, G. S. Buller, S. Klumpp, and D. Faivre, Influence of magnetic fields on magneto-aerotaxis, PLoS One 9, e101150 (2014).
[63] R. Marathe*, C. Meel*, N. C. Schmidt, L. Dewenter, R. Kurre, L. Greune, M. A. Schmidt, M. J. I. Müller, R. Lipowsky, B. Maier, and S. Klumpp, Bacterial twitching motility is coordinated by a two-dimensional tug-of-war with directional memory, Nature Commun. 5, 3759 (2014).
[62] P. Patra and S. Klumpp, Phenotypically heterogeneous populations in spatially heterogeneous environments, Phys. Rev. E (rapid communication) 89, 030702(R) (2014).
[61] D. Gomez, R. Marathe, V. Bierbaum, and S. Klumpp, Modeling stochastic gene expression in growing cells, J. Theor. Biol. 348, 1-11 (2014).
[60] S. Klumpp and T. Hwa, Bacterial growth: global effects on gene expression, growth feedback and proteome partition, Curr. Opin. Biotech. 28, 96-102 (2014).
[59] B. Lutz, M. Faber, A. Verma, S. Klumpp, and A. Schug, Differences between co-transcriptional and free riboswitch folding, Nucl. Acids Res. 42, 2687-2696 (2014).
[58] S. Klumpp, The secret life of a cellular business, Laboratory News, January 2014, 20-21.
[57] S. Klumpp, A superresolution census of RNA polymerase, Biophys. J. 105, 2613-2614 (2013).
[56] P. J. Vach, N. Brun, M. Bennet, L. Bertinetti, M. Widdrat, J. Baumgartner, S. Klumpp, P. Fratzl, and D. Faivre, Selecting for function: Solution synthesis and selection of magnetic nanopropellers, Nano Lett. 13, 5373-5378 (2013).
[55] M. Faber and S. Klumpp, Kinetic Monte Carlo approach to RNA folding dynamics using structure-based models, Phys. Rev. E 88, 052701 (2013).
[54] S. Klumpp, M. Scott, S. Pedersen, and T. Hwa, Molecular crowding limits translation and cell growth, Proc. Natl. Acad. Sci. USA 110, 16754-16759 (2013).
[53] M. Hintsche and S. Klumpp, Dilution and the theoretical description of growth-rate dependent gene expression, J. Biol. Eng. 7, 22 (2013).
[52] M. Sahoo and S. Klumpp, Backtracking dynamics of RNA polymerase: pausing and error correction, J. Phys.: Condens. Matter 25, 374104 (2013).
[51] P. Patra and S. Klumpp, Population dynamics of bacterial persistence, PLoS One 8, e62814 (2013).
[50] J. J. Dong, S. Klumpp, and R. K. P. Zia, Mass transport perspective on an accelerated exclusion process: Analysis of augmented current and unit-velocity phases, Phys. Rev. E 87, 022146 (2013).
[49] F. Berger, C. Keller, R. Lipowsky, and S. Klumpp, Elastic coupling effects in cooperative transport by a pair of molecular motors, Cell. Molec. Bioeng. 6, 48-64 (2013).
[48] S. Lechner, P. Patra, S. Klumpp, and R. Bertram, Interplay between population dynamics and drug tolerance of Staphylococcus aureus persister cells, J. Mol. Microbiol. Biotechnol. 22, 381-391 (2012).
[47] R. Marathe, D. Gomez, and S. Klumpp, Sources of stochasticity in constitutive and autoregulated gene expression, Physica Scripta T151, 014068 (2012).
[46] S. Klumpp, Mechanisms and economy of molecular machines, Physica Scripta T151, 014066 (2012).
[45] S. Klumpp, J. J. Dong, and T. Hwa, On ribosome load, codon usage and protein abundance, PLoS One 7, e48542 (2012).
[44] J. J. Dong, S. Klumpp, and R. K. P. Zia, Entrainment and unit velocity: Surprises in an accelerated exclusion process, Phys. Rev. Lett. 109, 130602 (2012).
[43] R. Marathe*, V. Bierbaum*, D. Gomez, and S. Klumpp, Deterministic and stochastic descriptions of gene expression dynamics, J. Stat. Phys. 148, 607-626 (2012).
[42] M. Faber and S. Klumpp, RNA folding dynamics studied with structure-based models, in: From Computational Biophysics to Systems Biology (CBSB11), edited by P. Carloni, U. H. E. Hansmann, T. Lippert, J. H. Meinke, S. Mohanty, W. Nadler, and O. Zimmermann (IAS Series, vol. 8, Forschungszentrum Jülich, 2012), pp. 45-48.
[41] F. Berger, C. Keller, S. Klumpp, and R. Lipowsky, Distinct transport regimes for two elastically coupled molecular motors, Phys. Rev. Lett. 108, 208101 (2012).
[40] S. Klumpp and D. Faivre, Interplay of magnetic interactions and active movements in the formation of magnetosome chains, PLoS One 7, e33562 (2012).
[39] M. Sahoo and S. Klumpp, Transcriptional proofreading in dense RNA polymerase traffic, EPL 96, 60004 (2011).
[38] F. Berger, C. Keller, M. J. I. Müller, S. Klumpp, and R. Lipowsky, Co-operative transport by molecular motors, Biochem. Soc. Trans. 39, 1211-1215 (2011).
[37] S. Klumpp, Growth-rate dependence reveals design principles of plasmid copy number control, PLoS One 6, e20403 (2011).
[36] S. Klumpp, Pausing and backtracking in transcription under dense traffic conditions, J. Stat. Phys. 142, 1252-1267 (2011).
[35] M. J. I. Müller, F. Berger, S. Klumpp, and R. Lipowsky, Cargo transport by teams of molecular motors: Basic mechanisms for intracellular drug delivery, in: Organelle-specific Pharmaceutical Nanotechnology, edited by V. Weissig and G. G. D'Souza (Wiley, Hoboken NJ, 2010). pp. 289-309.
[34] M. J. I. Müller, S. Klumpp, and R. Lipowsky, Bidirectional transport by molecular motors: Enhanced processivity and response to external forces, Biophys. J. 98, 2610-2618 (2010).
[33] S. Klumpp, Immer ans Ganze gekoppelt - Wie Zellwachstum genetische Schaltkreise beeinflusst, GIT Labor-Fachzeitschrift 54, 400-401 (5/2010).
[32] R. Lipowsky, J. Beeg, R. Dimova, S. Klumpp, and M. J. I. Müller, Cooperative behavior of molecular motors: Cargo transport and traffic phenomena, Physica E 42, 649-661 (2010).

2001-2009

[31] C. B. Korn, S. Klumpp, R. Lipowsky, and U. S. Schwarz, Stochastic simulations of cargo transport by processive molecular motors, J. Chem. Phys. 131, 245107 (2009).
[30] S. Klumpp, Z. Zhang, and T. Hwa, Growth rate-dependent global effects on gene expression in bacteria, Cell 139, 1366-1375 (2009).
[29] Y. Chai, S. Klumpp, M. J. I. Müller, and R. Lipowsky, Traffic by two species of molecular motors, Phys. Rev. E 80, 041928 (2009).
[28] S. Klumpp and T. Hwa, Traffic patrol in transcription of ribosomal RNA, RNA Biol. 6, 392-394 (2009).
[27] C. Hyeon, S. Klumpp, and J. N. Onuchic, Kinesin's backsteps under mechanical load, Phys. Chem. Chem. Phys. 11, 4899-4910 (2009).
[26] R. Lipowsky, J. Beeg, R. Dimova, S. Klumpp, S. Liepelt, M. J. I. Müller, and A. Valleriani, Active bio-systems: From single motor molecules to cooperative cargo transport, Biophys. Rev. Lett. 4, 77-137 (2009).
[25] M. J. I. Müller, J. Beeg, R. Dimova, S. Klumpp, and R. Lipowsky, Traffic by small teams of molecular motors, in: Traffic and Granular Flow '07, edited by C. Appert-Rolland, F. Chevoir, P. Gondret, S. Lassarre, J.-P. Lebacque, and M. Schreckenberg (Springer, Berlin, 2009), pp. 695-700.
[24] Y. Chai, R. Lipowsky, and S. Klumpp, Transport by molecular motors in the presence of static defects, J. Stat. Phys. 135, 241-260 (2009).
[23] S. Klumpp and T. Hwa, Growth-rate-dependent partitioning of RNA polymerases in bacteria, Proc. Natl. Acad. Sci. USA 105, 20245-20250 (2008).
[22] M. J. I. Müller, S. Klumpp, and R. Lipowsky, Motility states of molecular motors engaged in a stochastic tug-of-war, J. Stat. Phys. 133, 1059-1081 (2008).
[21] S. Klumpp and T. Hwa, Stochasticity and traffic jams in the transcription of ribosomal RNA: Intriguing role of termination and antitermination, Proc. Natl. Acad. Sci. USA 105, 18159-18164 (2008).
[20] S. Klumpp, Y. Chai, and R. Lipowsky, Effects of the chemomechanical stepping cycle on the traffic of molecular motors, Phys. Rev. E 78, 041909 (2008).
[19] M. J. I. Müller, S. Klumpp, and R. Lipowsky, Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors, Proc. Natl. Acad. Sci. USA 105, 4609-4614 (2008).
[18] J. Beeg, S. Klumpp, R. Dimova, R. S. Gracià, E. Unger, and R. Lipowsky, Transport of beads by several kinesin motors, Biophys. J. 94, 532-541 (2008).
[17] S. Klumpp, M. J. I. Müller, and R. Lipowsky, Traffic of molecular motors, in: Traffic and Granular Flow '05, edited by A. Schadschneider, T. Pöschel, R. Kühne, M. Schreckenberg, and D. E. Wolf (Springer, Berlin, 2007), pp. 251-261.
[16] S. Klumpp, M. J. I. Müller, and R. Lipowsky, Cooperative transport by small teams of molecular motors, Biophys. Rev. Lett. 1, 353-361 (2006).
[15] R. Lipowsky, Y. Chai, S. Klumpp, S. Liepelt, and M. J. I. Müller Molecular motor traffic: From biological nanomachines to macroscopic transport, Physica A 372, 34-51 (2006).
[14] S. Klumpp and R. Lipowsky, Active diffusion of motor particles, Phys. Rev. Lett. 95, 268102 (2005).
[13] S. Klumpp and R. Lipowsky, Cooperative cargo transport by several molecular motors, Proc. Natl. Acad. Sci. USA 102, 17284-17289 (2005).
[12] M. J. I. Müller, S. Klumpp, and R. Lipowsky, Molecular motor traffic in a half-open tube, J. Phys.: Condens. Matter 17, S3839-S3850 (2005).
[11] S. Klumpp, T. M. Nieuwenhuizen, and R. Lipowsky, Movements of molecular motors: Ratchets, random walks and traffic phenomena, Physica E 29, 380-389 (2005).
[10] S. Klumpp, T. M. Nieuwenhuizen, and R. Lipowsky, Self-organized density patterns of molecular motors in arrays of cytoskeletal filaments, Biophys. J. 88, 3118-3132 (2005).
[9] R. Lipowsky and S. Klumpp 'Life is motion': Multiscale motility of molecular motors, Physica A 352, 53-112 (2005).
[8] T. M. Nieuwenhuizen, S. Klumpp, and R. Lipowsky, Walks of molecular motors interacting with immobilized filaments, Physica A 350, 122-130 (2005).
[7] S. Klumpp and R. Lipowsky, Asymmetric simple exclusion processes with diffusive bottlenecks, Phys. Rev. E 70, 066104 (2004).
[6] T. M. Nieuwenhuizen, S. Klumpp, and R. Lipowsky, Random walks of molecular motors arising from diffusional encounters with immobilized filaments, Phys. Rev. E 69, 061911 (2004).
[5] S. Klumpp and R. Lipowsky, Phase transitions in systems with two species of molecular motors, Europhys. Lett. 66, 90-96 (2004).
[4] S. Klumpp and R. Lipowsky, Traffic of molecular motors through tube-like compartments, J. Stat. Phys. 113, 233-268 (2003).
[3] T. M. Nieuwenhuizen, S. Klumpp, and R. Lipowsky, Walks of molecular motors in two and three dimensions, Europhys. Lett. 58, 468-474 (2002).
[2] R. Lipowsky, S. Klumpp, and T. M. Nieuwenhuizen, Random walks of cytoskeletal motors in open and closed compartments, Phys. Rev. Lett. 87, 108101 (2001).
[1] S. Klumpp, A. Mielke, and C. Wald, Noise-induced transport of two coupled particles, Phys. Rev. E 63, 031914 (2001).